Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Profiler auf Zellebene

02.09.2011
Forschern der ETH Zürich und des Massachusetts Institute of Technology (MIT) ist es gelungen, ein biologisches Computernetzwerk in menschliche Zellen einzubauen. Das Netzwerk erkennt Krebszellen anhand einer logischen Rechenoperation mit fünf krebsspezifischen Faktoren und führt zu deren Zerstörung.

Wissenschaftler arbeiten schon seit geraumer Zeit an biologischen Computern, die in lebenden Zellen arbeiten. Sie sollen beispielsweise verschiedene Moleküle im Innern einer menschlichen Körperzelle erkennen, die wichtige Informationen über den Gesundheitszustand der Zelle preisgeben und eine entsprechende Behandlung einleiten. Nun sind Yaakov (Kobi) Benenson, Professor für Synthetische Biologie der ETH Zürich und MIT-Professor Ron Weiss mit einem Team von Wissenschaftlern diesem Ziel einen grossen Schritt näher gekommen.

In einer Publikation, die soeben in «Science» erschienen ist, stellen sie einen Schaltkreis aus verschiedenen Genen vor, der zwischen Krebszellen und gesunden Zellen unterscheiden und richtig – sprich mit Zelltod der entarteten Zellen – reagieren kann. Dieses Netzwerk erkennt im Inneren der Zelle fünf Krebs-spezifische molekulare Faktoren sowie deren Konzentration. Weil der Schaltkreis nur funktioniert, wenn alle Faktoren in der Zelle vorhanden sind, muss die Identifizierung der Zelle sehr spezifisch erfolgen.

Krebszellen selektiv in den Tod schicken

Die Forscher testeten das Gen-Netzwerk in verschiedenen Kulturen menschlicher Zellen: Krebszellen aus dem Gebärmutterhals, den sogenannten HeLa-Zellen, und gesunden Zellen. Diese Experimente waren erfolgreich. Nachdem die Forscher den genetischen Biorechner der Zellkultur eingeschleust hatten, starben die HeLa-Zellen ab. Die gesunden Zellen hingegen blieben vom Zelltod verschont.

Für diesen Erfolg war viel Vorarbeit nötig. Benenson und sein Team mussten erst herausfinden, welche Kombination von Molekülen einzigartig für die HeLa-Zellen sind. Als Signalmoleküle dienten verschiedene Arten von Mikro-RNS (miRNA). Die Forschenden mussten erst ein miRNS-Profil identifizieren, das für eine HeLa-Zelle typisch ist. Doch im Körper gibt es rund 250 verschiedene Zelltypen und unzählige Varianten von Krebszellen, wovon hunderte im Labor gezüchtet werden können. Noch grösser ist die Vielfalt von miRNS: 500 bis 1000 verschiedene Arten sind aus menschlichen Zellen bekannt. «Jeder Zelltyp, unabhängig davon ob gesund oder krank, hat verschiedene miRNS-Moleküle, die an- oder abgeschaltet sind», sagt Benenson.

Fünf Faktoren für Krebsprofil

Ein miRNS-Profil zu erstellen, ist einer Krankheitsdiagnose ähnlich: «Ein Merkmal allein, wie beispielsweise Fieber, kann eine Krankheit nicht zuverlässig bestimmen. Je mehr Faktoren ein Arzt kennt, desto zuverlässiger wird seine Diagnose», erklärt der Professor, der vor eineinhalb Jahren von Harvard an die ETH Zürich gekommen ist. Sein Team hat deshalb nach mehreren Faktoren gesucht, die Krebszellen zuverlässig von gesunden Körperzellen unterscheiden. In ihrem Versuch mit den HeLa-Zellen konnten die Wissenschaftler schliesslich fünf miRNSs identifizieren, die in einer bestimmten Konzentrationen vorliegen mussten, damit das Gen-Netzwerk die Zelle präzise und zuverlässig als Krebszelle identifizieren kann.

Operationen wie in einem Rechner

Jeder Faktor muss mit einem ‚AND‘- oder einem AND NOT-Befehl mit dem nächsten logisch verknüpft sein, damit am Schluss das richtige Resultat erzielt werden kann. Dass der Zellcomputer gleich fünf verschiedene Faktoren miteinander verknüpfte und daraus die richtige Diagnose stellen konnte, sind für Benenson ein grosser Erfolg und ein wichtiger Schritt.

In einem nächsten Schritt will er diese Zellcomputer in einem geeigneten Tiermodell testen. Zukünftige Anwendungen könnten bei Diagnose und Therapie liegen. Allerdings gibt es noch ein paar schwierige Probleme zu lösen, wie etwa die fremden Gene in einer Zelle effizient und sicher zu halten. Die Gene in die Zellen zu bringen, ist ebenfalls nicht einfach. Für seinen Ansatz braucht der ETH-Professor nur eine temporäre Genzugabe, wozu die Methoden, viral oder chemisch, noch nicht völlig ausgreift sind. «Von einer voll funktionalen Behandlungsmethode für Menschen sind wir noch immer sehr weit entfernt. Diese Arbeit aber ist ein erster, wichtiger Schritt, der die Machbarkeit solch selektiver Diagnosemethode aufzeigt», sagt Benenson.

Original: Zhen Xie, Liliana Wroblewska, Laura Prochazka, Ron Weiss and Yaakov Benenson. Multi-input RNAi-based logic circuit for identification of specific cancer cells. To appear in Science issue of Sept 2, 2011

Claudia Naegeli | ETH Zürich
Weitere Informationen:
http://www.ethz.ch

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Neues Schiff für die Fischerei- und Meeresforschung
22.03.2017 | Johann Heinrich von Thünen-Institut, Bundesforschungsinstitut für Ländliche Räume, Wald und Fischerei

nachricht Mit voller Kraft auf Erregerjagd
22.03.2017 | Helmholtz-Zentrum für Infektionsforschung

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Gigantische Magnetfelder im Universum

Astronomen aus Bonn und Tautenburg in Thüringen beobachteten mit dem 100-m-Radioteleskop Effelsberg Galaxienhaufen, das sind Ansammlungen von Sternsystemen, heißem Gas und geladenen Teilchen. An den Rändern dieser Galaxienhaufen fanden sie außergewöhnlich geordnete Magnetfelder, die sich über viele Millionen Lichtjahre erstrecken. Sie stellen die größten bekannten Magnetfelder im Universum dar.

Die Ergebnisse werden am 22. März in der Fachzeitschrift „Astronomy & Astrophysics“ veröffentlicht.

Galaxienhaufen sind die größten gravitativ gebundenen Strukturen im Universum, mit einer Ausdehnung von etwa zehn Millionen Lichtjahren. Im Vergleich dazu ist...

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Auf der Spur des linearen Ubiquitins

Eine neue Methode ermöglicht es, den Geheimcode linearer Ubiquitin-Ketten zu entschlüsseln. Forscher der Goethe-Universität berichten darüber in der aktuellen Ausgabe von "nature methods", zusammen mit Partnern der Universität Tübingen, der Queen Mary University und des Francis Crick Institute in London.

Ubiquitin ist ein kleines Molekül, das im Körper an andere Proteine angehängt wird und so deren Funktion kontrollieren und verändern kann. Die Anheftung...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Physiker erzeugen gezielt Elektronenwirbel

Einem Team um den Oldenburger Experimentalphysiker Prof. Dr. Matthias Wollenhaupt ist es mithilfe ultrakurzer Laserpulse gelungen, gezielt Elektronenwirbel zu erzeugen und diese dreidimensional abzubilden. Damit haben sie einen komplexen physikalischen Vorgang steuern können: die sogenannte Photoionisation oder Ladungstrennung. Diese gilt als entscheidender Schritt bei der Umwandlung von Licht in elektrischen Strom, beispielsweise in Solarzellen. Die Ergebnisse ihrer experimentellen Arbeit haben die Grundlagenforscher kürzlich in der renommierten Fachzeitschrift „Physical Review Letters“ veröffentlicht.

Das Umwandeln von Licht in elektrischen Strom ist ein ultraschneller Vorgang, dessen Details erstmals Albert Einstein in seinen Studien zum photoelektrischen...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Die „Panama Papers“ aus Programmierersicht

22.03.2017 | Veranstaltungen

Über Raum, Zeit und Materie

22.03.2017 | Veranstaltungen

Unter der Haut

22.03.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Die „Panama Papers“ aus Programmierersicht

22.03.2017 | Veranstaltungsnachrichten

Neues Schiff für die Fischerei- und Meeresforschung

22.03.2017 | Biowissenschaften Chemie

Mit voller Kraft auf Erregerjagd

22.03.2017 | Biowissenschaften Chemie