Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Problemlösen lenkt die Verarbeitung von Sinneseindrücken

24.06.2013
Verschiedene Hirnareale verarbeiten unsere Sinneseindrücke. Wie diese Areale der Grosshirnrinde miteinander kommunizieren und sensorische Informationen verarbeiten, beschäftigt die Neurowissenschaft seit Langem.

Nun zeigen Hirnforscher der Universität Zürich anhand des Tastsinnes von Mäusen: Die Weiterleitung sensorischer Informationen von einem Areal an verbundene Areale hängt ab von der Aufgabenstellung und einem zielgerichteten Verhalten. Diese Erkenntnisse sind wichtig als Grundlage für das bessere Verständnis von kognitiven Störungen.


Nervenzellen im primären somatosensorischen Areal (S1) der Hirnrinde der Maus. Violett gefärbte Zellen projizieren zum sekundären somatosensorischen Areal (S2), blau gefärbte Zellen zum Motorkortex (M1). Die Stärke der schematisch dargestellten Kommunikation zwischen den Arealen hängt von der zu lösenden Aufgabenstellung ab: links, Sandpapierunterscheidung; rechts, Lokalisationsproblem.


Jerry Chen, HiFo, UZH

Im Gehirn von Säugetieren ist die Grosshirnrinde entscheidend an der Verarbeitung von Sinneseindrücken beteiligt. Die Hirnrinde kann in verschiedene Areale unterteilt werden, wovon jedes einen anderen Aspekt der Wahrnehmung, Entscheidungsfindung oder Handlung bedient. So umfasst der somatosensorische Kortex jenen Anteil an der Grosshirnrinde, der hauptsächlich die haptische Wahrnehmung verarbeitet. Die verschiedenen Areale der Hirnrinde sind miteinander vernetzt und kommunizieren miteinander.

Eine zentrale, ungelöste Frage der Neurowissenschaften ist, wie diese Hirnareale miteinander kommunizieren, um Sinneseindrücke zu verarbeiten und ein entsprechendes Verhalten zu erzeugen. Eine Antwort darauf liefert die Gruppe um Professor Fritjof Helmchen am Institut für Hirnforschung der Universität Zürich: Die Verarbeitung von sensorischen Informationen ist davon abhängig, was man erreichen möchte. Die Hirnforscher haben beobachtet, wie Nervenzellen im sensorischen Kortex, die mit unterschiedlichen Hirnarealen kommunizieren, bei der Problemlösung verschiedener Aufgaben sehr unterschiedlich aktiviert werden.

Zielgerichtete Verarbeitung sensorischer Informationen

In ihrer Veröffentlichung in «Nature» untersuchten die Forschenden, wie Mäuse ihre Schnurrhaare benutzten, um ihre Umgebung zu ertasten, ähnlich wie wir unsere Hände und Finger. Eine Mäusegruppe wurde darauf trainiert, mit Hilfe ihrer Schnurrhaare grobe von feinen Sandpapieren zu unterscheiden, um eine Belohnung zu erhalten. Eine andere Gruppe musste herausfinden, in welchem Winkel zu ihren Schnurrhaaren sich ein Objekt ¬–¬ eine Metallstange – befand. Die Hirnforscher massen mithilfe einer neuen Mikroskopietechnik die Aktivität von Nervenzellen im primären somatosensorischen Kortex. Durch gleichzeitige anatomische Färbungen identifizierten sie zudem, welche dieser Nervenzellen ihre Fortsätze zu dem weiter entfernt liegenden sekundären somatosensorischen Areal bzw. zum Motorkortex sandten.

Die primären somatosensorischen Nervenzellen mit Projektionen zum sekundären somatosensorischen Kortex wurden vorwiegend dann aktiv, wenn Mäuse die Oberfläche der Sandpapiere unterscheiden mussten. Währenddessen waren Nervenzellen mit Fortsätzen zum Motorkortex stärker bei der Lokalisation der Metallstange beteiligt. Diese unterschiedlichen Erregungsmuster zeigten sich jedoch nicht, wenn Mäuse die Sandpapiere oder Metallstangen passiv, ohne Aufgabenstellung berührten, d.h. ihre Handlung nicht durch eine Belohnung motiviert war. Die sensorischen Stimuli allein waren also nicht hinreichend für das Muster der Informationsweiterleitung an entferntere Hirnareale.

Kommunikationsstörung im Gehirn

Laut Fritjof Helmchen kann die Aktivität in einem Hirnrindenareal gezielt zu weiter entfernten Arealen geleitet werden, wenn wir spezifische Informationen aus der Umgebung herausfiltern müssen, um eine Aufgabe zu lösen. Gerade diese Kommunikation zwischen Hirnarealen funktioniert bei kognitiven Störungen, wie beispielsweise bei Alzheimer, Autismus oder Schizophrenie, häufig nicht. «Ein besseres Verständnis der Funktionsweise dieser weitreichenden, vernetzten Verbindungen im Gehirn kann möglicherweise helfen, Therapien zu entwickeln, welche diese spezifische kortikale Kommunikation wiederherstellen», sagt Fritjof Helmchen. Das Ziel ist, die beeinträchtigten kognitive Fähigkeiten der Betroffenen so wieder zu verbessern.

Literatur:

Jerry L. Chen, Stefano Carta, Joana Soldado-Magraner, Bernard L. Schneider, and Fritjof Helmchen. Behaviour-dependent recruitment of long-range projection neurons in somatosensory cortex. Nature. June 23, 2013. doi: 10.1038/nature12236

Kontakt:

Prof Fritjof Helmchen
Institut für Hirnforschung
Universität Zürich
Tel. +41 44 635 33 40
E-Mail: helmchen@hifo.uzh.ch

Beat Müller | Universität Zürich
Weitere Informationen:
http://www.uzh.ch

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Virus mit Eierschale
22.08.2017 | Gesellschaft Deutscher Chemiker e.V.

nachricht Ein Quantenlineal für Biomoleküle
22.08.2017 | Universität Wien

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Wie ein Bakterium von Methanol leben kann

Bei einem Bakterium, das Methanol als Nährstoff nutzen kann, identifizierten ETH-Forscher alle dafür benötigten Gene. Die Erkenntnis hilft, diesen Rohstoff für die Biotechnologie besser nutzbar zu machen.

Viele Chemiker erforschen derzeit, wie man aus den kleinen Kohlenstoffverbindungen Methan und Methanol grössere Moleküle herstellt. Denn Methan kommt auf der...

Im Focus: Topologische Quantenzustände einfach aufspüren

Durch gezieltes Aufheizen von Quantenmaterie können exotische Materiezustände aufgespürt werden. Zu diesem überraschenden Ergebnis kommen Theoretische Physiker um Nathan Goldman (Brüssel) und Peter Zoller (Innsbruck) in einer aktuellen Arbeit im Fachmagazin Science Advances. Sie liefern damit ein universell einsetzbares Werkzeug für die Suche nach topologischen Quantenzuständen.

In der Physik existieren gewisse Größen nur als ganzzahlige Vielfache elementarer und unteilbarer Bestandteile. Wie das antike Konzept des Atoms bezeugt, ist...

Im Focus: Unterwasserroboter soll nach einem Jahr in der arktischen Tiefsee auftauchen

Am Dienstag, den 22. August wird das Forschungsschiff Polarstern im norwegischen Tromsø zu einer besonderen Expedition in die Arktis starten: Der autonome Unterwasserroboter TRAMPER soll nach einem Jahr Einsatzzeit am arktischen Tiefseeboden auftauchen. Dieses Gerät und weitere robotische Systeme, die Tiefsee- und Weltraumforscher im Rahmen der Helmholtz-Allianz ROBEX gemeinsam entwickelt haben, werden nun knapp drei Wochen lang unter Realbedingungen getestet. ROBEX hat das Ziel, neue Technologien für die Erkundung schwer erreichbarer Gebiete mit extremen Umweltbedingungen zu entwickeln.

„Auftauchen wird der TRAMPER“, sagt Dr. Frank Wenzhöfer vom Alfred-Wegener-Institut, Helmholtz-Zentrum für Polar- und Meeresforschung (AWI) selbstbewusst. Der...

Im Focus: Mit Barcodes der Zellentwicklung auf der Spur

Darüber, wie sich Blutzellen entwickeln, existieren verschiedene Auffassungen – sie basieren jedoch fast ausschließlich auf Experimenten, die lediglich Momentaufnahmen widerspiegeln. Wissenschaftler des Deutschen Krebsforschungszentrums stellen nun im Fachjournal Nature eine neue Technik vor, mit der sich das Geschehen dynamisch erfassen lässt: Mithilfe eines „Zufallsgenerators“ versehen sie Blutstammzellen mit genetischen Barcodes und können so verfolgen, welche Zelltypen aus der Stammzelle hervorgehen. Diese Technik erlaubt künftig völlig neue Einblicke in die Entwicklung unterschiedlicher Gewebe sowie in die Krebsentstehung.

Wie entsteht die Vielzahl verschiedener Zelltypen im Blut? Diese Frage beschäftigt Wissenschaftler schon lange. Nach der klassischen Vorstellung fächern sich...

Im Focus: Fizzy soda water could be key to clean manufacture of flat wonder material: Graphene

Whether you call it effervescent, fizzy, or sparkling, carbonated water is making a comeback as a beverage. Aside from quenching thirst, researchers at the University of Illinois at Urbana-Champaign have discovered a new use for these "bubbly" concoctions that will have major impact on the manufacturer of the world's thinnest, flattest, and one most useful materials -- graphene.

As graphene's popularity grows as an advanced "wonder" material, the speed and quality at which it can be manufactured will be paramount. With that in mind,...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

International führende Informatiker in Paderborn

21.08.2017 | Veranstaltungen

Wissenschaftliche Grundlagen für eine erfolgreiche Klimapolitik

21.08.2017 | Veranstaltungen

DGI-Forum in Wittenberg: Fake News und Stimmungsmache im Netz

21.08.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Körperenergie als Stromquelle

22.08.2017 | Energie und Elektrotechnik

Ein Quantenlineal für Biomoleküle

22.08.2017 | Biowissenschaften Chemie

Prostatakrebs: Bluttest sagt Tumorresistenz vorher

22.08.2017 | Biowissenschaften Chemie