Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Problemlösen lenkt die Verarbeitung von Sinneseindrücken

24.06.2013
Verschiedene Hirnareale verarbeiten unsere Sinneseindrücke. Wie diese Areale der Grosshirnrinde miteinander kommunizieren und sensorische Informationen verarbeiten, beschäftigt die Neurowissenschaft seit Langem.

Nun zeigen Hirnforscher der Universität Zürich anhand des Tastsinnes von Mäusen: Die Weiterleitung sensorischer Informationen von einem Areal an verbundene Areale hängt ab von der Aufgabenstellung und einem zielgerichteten Verhalten. Diese Erkenntnisse sind wichtig als Grundlage für das bessere Verständnis von kognitiven Störungen.


Nervenzellen im primären somatosensorischen Areal (S1) der Hirnrinde der Maus. Violett gefärbte Zellen projizieren zum sekundären somatosensorischen Areal (S2), blau gefärbte Zellen zum Motorkortex (M1). Die Stärke der schematisch dargestellten Kommunikation zwischen den Arealen hängt von der zu lösenden Aufgabenstellung ab: links, Sandpapierunterscheidung; rechts, Lokalisationsproblem.


Jerry Chen, HiFo, UZH

Im Gehirn von Säugetieren ist die Grosshirnrinde entscheidend an der Verarbeitung von Sinneseindrücken beteiligt. Die Hirnrinde kann in verschiedene Areale unterteilt werden, wovon jedes einen anderen Aspekt der Wahrnehmung, Entscheidungsfindung oder Handlung bedient. So umfasst der somatosensorische Kortex jenen Anteil an der Grosshirnrinde, der hauptsächlich die haptische Wahrnehmung verarbeitet. Die verschiedenen Areale der Hirnrinde sind miteinander vernetzt und kommunizieren miteinander.

Eine zentrale, ungelöste Frage der Neurowissenschaften ist, wie diese Hirnareale miteinander kommunizieren, um Sinneseindrücke zu verarbeiten und ein entsprechendes Verhalten zu erzeugen. Eine Antwort darauf liefert die Gruppe um Professor Fritjof Helmchen am Institut für Hirnforschung der Universität Zürich: Die Verarbeitung von sensorischen Informationen ist davon abhängig, was man erreichen möchte. Die Hirnforscher haben beobachtet, wie Nervenzellen im sensorischen Kortex, die mit unterschiedlichen Hirnarealen kommunizieren, bei der Problemlösung verschiedener Aufgaben sehr unterschiedlich aktiviert werden.

Zielgerichtete Verarbeitung sensorischer Informationen

In ihrer Veröffentlichung in «Nature» untersuchten die Forschenden, wie Mäuse ihre Schnurrhaare benutzten, um ihre Umgebung zu ertasten, ähnlich wie wir unsere Hände und Finger. Eine Mäusegruppe wurde darauf trainiert, mit Hilfe ihrer Schnurrhaare grobe von feinen Sandpapieren zu unterscheiden, um eine Belohnung zu erhalten. Eine andere Gruppe musste herausfinden, in welchem Winkel zu ihren Schnurrhaaren sich ein Objekt ¬–¬ eine Metallstange – befand. Die Hirnforscher massen mithilfe einer neuen Mikroskopietechnik die Aktivität von Nervenzellen im primären somatosensorischen Kortex. Durch gleichzeitige anatomische Färbungen identifizierten sie zudem, welche dieser Nervenzellen ihre Fortsätze zu dem weiter entfernt liegenden sekundären somatosensorischen Areal bzw. zum Motorkortex sandten.

Die primären somatosensorischen Nervenzellen mit Projektionen zum sekundären somatosensorischen Kortex wurden vorwiegend dann aktiv, wenn Mäuse die Oberfläche der Sandpapiere unterscheiden mussten. Währenddessen waren Nervenzellen mit Fortsätzen zum Motorkortex stärker bei der Lokalisation der Metallstange beteiligt. Diese unterschiedlichen Erregungsmuster zeigten sich jedoch nicht, wenn Mäuse die Sandpapiere oder Metallstangen passiv, ohne Aufgabenstellung berührten, d.h. ihre Handlung nicht durch eine Belohnung motiviert war. Die sensorischen Stimuli allein waren also nicht hinreichend für das Muster der Informationsweiterleitung an entferntere Hirnareale.

Kommunikationsstörung im Gehirn

Laut Fritjof Helmchen kann die Aktivität in einem Hirnrindenareal gezielt zu weiter entfernten Arealen geleitet werden, wenn wir spezifische Informationen aus der Umgebung herausfiltern müssen, um eine Aufgabe zu lösen. Gerade diese Kommunikation zwischen Hirnarealen funktioniert bei kognitiven Störungen, wie beispielsweise bei Alzheimer, Autismus oder Schizophrenie, häufig nicht. «Ein besseres Verständnis der Funktionsweise dieser weitreichenden, vernetzten Verbindungen im Gehirn kann möglicherweise helfen, Therapien zu entwickeln, welche diese spezifische kortikale Kommunikation wiederherstellen», sagt Fritjof Helmchen. Das Ziel ist, die beeinträchtigten kognitive Fähigkeiten der Betroffenen so wieder zu verbessern.

Literatur:

Jerry L. Chen, Stefano Carta, Joana Soldado-Magraner, Bernard L. Schneider, and Fritjof Helmchen. Behaviour-dependent recruitment of long-range projection neurons in somatosensory cortex. Nature. June 23, 2013. doi: 10.1038/nature12236

Kontakt:

Prof Fritjof Helmchen
Institut für Hirnforschung
Universität Zürich
Tel. +41 44 635 33 40
E-Mail: helmchen@hifo.uzh.ch

Beat Müller | Universität Zürich
Weitere Informationen:
http://www.uzh.ch

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Kupferhydroxid-Nanopartikel schützen vor toxischen Sauerstoffradikalen im Zigarettenrauch
30.03.2017 | Johannes Gutenberg-Universität Mainz

nachricht Nierentransplantationen: Weisse Blutzellen kontrollieren Virusvermehrung
30.03.2017 | Universität Basel

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Atome rennen sehen - Phasenübergang live beobachtet

Ein Wimpernschlag ist unendlich lang dagegen – innerhalb von 350 Billiardsteln einer Sekunde arrangieren sich die Atome neu. Das renommierte Fachmagazin Nature berichtet in seiner aktuellen Ausgabe*: Wissenschaftler vom Center for Nanointegration (CENIDE) der Universität Duisburg-Essen (UDE) haben die Bewegungen eines eindimensionalen Materials erstmals live verfolgen können. Dazu arbeiteten sie mit Kollegen der Universität Paderborn zusammen. Die Forscher fanden heraus, dass die Beschleunigung der Atome jeden Porsche stehenlässt.

Egal wie klein sie sind, die uns im Alltag umgebenden Dinge sind dreidimensional: Salzkristalle, Pollen, Staub. Selbst Alufolie hat eine gewisse Dicke. Das...

Im Focus: Kleinstmagnete für zukünftige Datenspeicher

Ein internationales Forscherteam unter der Leitung von Chemikern der ETH Zürich hat eine neue Methode entwickelt, um eine Oberfläche mit einzelnen magnetisierbaren Atomen zu bestücken. Interessant ist dies insbesondere für die Entwicklung neuartiger winziger Datenträger.

Die Idee ist faszinierend: Auf kleinstem Platz könnten riesige Datenmengen gespeichert werden, wenn man für eine Informationseinheit (in der binären...

Im Focus: Quantenkommunikation: Wie man das Rauschen überlistet

Wie kann man Quanteninformation zuverlässig übertragen, wenn man in der Verbindungsleitung mit störendem Rauschen zu kämpfen hat? Uni Innsbruck und TU Wien präsentieren neue Lösungen.

Wir kommunizieren heute mit Hilfe von Funksignalen, wir schicken elektrische Impulse durch lange Leitungen – doch das könnte sich bald ändern. Derzeit wird...

Im Focus: Entwicklung miniaturisierter Lichtmikroskope - „ChipScope“ will ins Innere lebender Zellen blicken

Das Institut für Halbleitertechnik und das Institut für Physikalische und Theoretische Chemie, beide Mitglieder des Laboratory for Emerging Nanometrology (LENA), der Technischen Universität Braunschweig, sind Partner des kürzlich gestarteten EU-Forschungsprojektes ChipScope. Ziel ist es, ein neues, extrem kleines Lichtmikroskop zu entwickeln. Damit soll das Innere lebender Zellen in Echtzeit beobachtet werden können. Sieben Institute in fünf europäischen Ländern beteiligen sich über die nächsten vier Jahre an diesem technologisch anspruchsvollen Projekt.

Die zukünftigen Einsatzmöglichkeiten des neu zu entwickelnden und nur wenige Millimeter großen Mikroskops sind äußerst vielfältig. Die Projektpartner haben...

Im Focus: A Challenging European Research Project to Develop New Tiny Microscopes

The Institute of Semiconductor Technology and the Institute of Physical and Theoretical Chemistry, both members of the Laboratory for Emerging Nanometrology (LENA), at Technische Universität Braunschweig are partners in a new European research project entitled ChipScope, which aims to develop a completely new and extremely small optical microscope capable of observing the interior of living cells in real time. A consortium of 7 partners from 5 countries will tackle this issue with very ambitious objectives during a four-year research program.

To demonstrate the usefulness of this new scientific tool, at the end of the project the developed chip-sized microscope will be used to observe in real-time...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Industriearbeitskreis »Prozesskontrolle in der Lasermaterialbearbeitung ICPC« lädt nach Aachen ein

28.03.2017 | Veranstaltungen

Neue Methoden für zuverlässige Mikroelektronik: Internationale Experten treffen sich in Halle

28.03.2017 | Veranstaltungen

Wie Menschen wachsen

27.03.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Nierentransplantationen: Weisse Blutzellen kontrollieren Virusvermehrung

30.03.2017 | Biowissenschaften Chemie

Zuckerrübenschnitzel: der neue Rohstoff für Werkstoffe?

30.03.2017 | Materialwissenschaften

Integrating Light – Your Partner LZH: Das LZH auf der Hannover Messe 2017

30.03.2017 | HANNOVER MESSE