Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Primäre Sehrinde erzeugt effizient komprimierte Sinnesinformation: Nervenzellen subtrahieren Bilder

17.12.2013
Zehn Millionen Bits – das ist die Information, die das Auge bei schnellen Blickbewegungen in jeder Sekunde an das Großhirn übermittelt.

Wie die primäre Sehrinde, die Eingangsstation für Informationen des Sehsinns im Gehirn, diese Daten weiterverarbeitet, beschreiben Forscher der Ruhr-Universität Bochum (RUB) und der Universität Osnabrück in der Fachzeitschrift „Cerebral Cortex“. Mit einem neuen optischen Verfahren wiesen sie nach, dass das Gehirn nicht immer die vollständige Bildinformation überträgt. Stattdessen bedient es sich der Unterschiede zwischen aktuellen und zuvor gesehenen Bildern.


Wenn die Sehrinde hintereinander ein vollständiges Bild und ein Bild mit fehlenden Elementen – hier vertikalen Konturen – verarbeitet, „berechnet“ sie die Unterschiede (unten).

Copyright: RUB, Bild: Jancke

Effiziente Reduktion der Datenmenge

Bislang gingen Forscher davon aus, dass Informationen in der Eingangsstation des Sehsinns weitestgehend vollständig an höhere Gehirnareale weitergeleitet werden und dort zu Bildeindrücken führen. „Es ist daher überraschend, dass bereits in der Sehrinde, dem Flaschenhals auf dem Weg in das Großhirn, eine erhebliche Reduktion der Datenmenge erfolgt“, sagt PD Dr. Dirk Jancke vom Institut für Neuroinformatik der RUB. „Intuitiv würde man denken, dass unser Sehsystem ähnlich wie eine Videokamera fortwährend Bilder erzeugt. Wir zeigen hingegen, dass die Sehrinde redundante Informationen energiesparend unterdrückt, indem sie häufig nur Bilddifferenzen weiterleitet.“

Plus oder minus: zwei Codierungsstrategien des Gehirns

Die Forscher registrierten die Antworten von Nervenzellen auf natürliche Bildsequenzen, zum Beispiel Szenen, in denen Vegetationslandschaften oder Gebäude abgebildet waren. Von den Bildern erstellten sie zwei Versionen: eine vollständige und eine, in der sie gezielt bestimmte Elemente entfernten, nämlich vertikale oder horizontale Konturen. War die Zeitspanne zwischen den einzelnen Bildern kurz, 30 Millisekunden, repräsentierten die Nervenzellen die vollständige Bildinformation. Das änderte sich bei Sequenzen mit Zeitabständen über 100 Millisekunden. Nun repräsentierten die Zellen ausschließlich neu hinzukommende oder fehlende Elemente, also Bilddifferenzen. „Wenn wir eine Szene analysieren, führt das Auge sehr schnelle Miniaturbewegungen aus, um die feinen Details zu erfassen“, erklärt Nora Nortmann, Doktorandin am Institut für Kognitionspsychologie der Universität Osnabrück und der RUB-Arbeitsgruppe Optical Imaging. Die Sehrinde leitet diese Detailinformationen vollständig und unmittelbar weiter. „Bei Blickwechseln, die etwas mehr Zeit in Anspruch nehmen, codiert sie hingegen, was sich in den Bildern ändert“, so die Doktorandin weiter. Dadurch stechen bestimmte Bildbereiche hervor, und interessante Orte lassen sich leicht detektieren, spekulieren die Forscher.

„Unser Gehirn schaut permanent in die Zukunft“

Die Studie zeigt, wie Aktivitäten von visuellen Nervenzellen durch vergangene Ereignisse beeinflusst sind. „Die Zellen bauen eine Art Kurzzeitgedächtnis auf, das konstante Eingänge speichert“, erklärt Dirk Jancke. Ändert sich abrupt etwas im wahrgenommenen Bild, generiert das Gehirn auf Basis der vergangenen Bilder eine Art Fehlersignal. Dieses Signal spiegelt dann nicht den aktuellen Eingang wider, sondern wie der aktuelle Eingang von der Erwartung abweicht. Bislang nahmen Forscher an, dass diese sogenannte prädiktive Codierung nur in höheren Gehirnarealen stattfindet. „Wir zeigen, dass das Prinzip bereits für frühe Stufen der kortikalen Verarbeitung zutrifft“, resümiert Jancke. „Unser Gehirn schaut permanent in die Zukunft und vergleicht aktuelle Eingänge mit Erwartungen, die sich aus vergangenen Situationen ergeben.“

Gehirnaktivität im Millisekundenbereich beobachten

Um die Dynamik der Nervenzellaktivität im Gehirn im Millisekundenbereich zu verfolgen, verwendeten die Wissenschaftler spannungsabhängige Farbstoffe. Diese Stoffe fluoreszieren, wenn Nervenzellen elektrische Impulse erhalten und aktiv werden. Ein hochauflösendes Kamerasystem und eine anschließende computergestützte Analyse erlauben, die Nervenzellaktivität über Oberflächen von mehreren Quadratmillimetern Größe zu messen. Auf diese Weise entsteht ein zeitlich und räumlich präziser Film der Verarbeitungsprozesse in neuronalen Netzwerken.

Titelaufnahme

N. Nortmann, S. Rekauzke, S. Onat, P. König, D. Jancke (2013): Primary visual cortex represents the difference between past and present, Cerebral Cortex, DOI: 10.1093/cercor/bht318

Weitere Informationen

PD Dr. Dirk Jancke, Optical Imaging Group, Institut für Neuroinformatik der Ruhr-Universität, 44780 Bochum, Tel. 0234/32-27845, E-Mail: dirk.jancke@rub.de

Dr. Julia Weiler | idw
Weitere Informationen:
http://www.ruhr-uni-bochum.de

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Auf der molekularen Streckbank
24.02.2017 | Technische Universität München

nachricht Sicherungskopie im Zentralhirn: Wie Fruchtfliegen ein Ortsgedächtnis bilden
24.02.2017 | Johannes Gutenberg-Universität Mainz

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: „Vernetzte Autonome Systeme“ von acatech und DFKI auf der CeBIT

Auf der IT-Messe CeBIT vom 20. bis 24. März präsentieren acatech – Deutsche Akademie der Technikwissenschaften und das Deutsche Forschungszentrum für Künstliche Intelligenz (DFKI) in Kooperation mit der Deutschen Messe AG vernetzte Autonome Systeme. In Halle 12 am Stand B 63 erwarten die Besucherinnen und Besucher unter anderem Roboter, die Hand in Hand mit Menschen zusammenarbeiten oder die selbstständig gefährliche Umgebungen erkunden.

Auf der IT-Messe CeBIT vom 20. bis 24. März präsentieren acatech – Deutsche Akademie der Technikwissenschaften und das Deutsche Forschungszentrum für...

Im Focus: Kühler Zwerg und die sieben Planeten

Erdgroße Planeten mit gemäßigtem Klima in System mit ungewöhnlich vielen Planeten entdeckt

In einer Entfernung von nur 40 Lichtjahren haben Astronomen ein System aus sieben erdgroßen Planeten entdeckt. Alle Planeten wurden unter Verwendung von boden-...

Im Focus: Mehr Sicherheit für Flugzeuge

Zwei Entwicklungen am Lehrgebiet Rechnerarchitektur der FernUniversität in Hagen können das Fliegen sicherer machen: ein Flugassistenzsystem, das bei einem totalen Triebwerksausfall zum Einsatz kommt, um den Piloten ein sicheres Gleiten zu einem Notlandeplatz zu ermöglichen, und ein Assistenzsystem für Segelflieger, das ihnen das Erreichen größerer Höhen erleichtert. Präsentiert werden sie von Prof. Dr.-Ing. Wolfram Schiffmann auf der Internationalen Fachmesse für Allgemeine Luftfahrt AERO vom 5. bis 8. April in Friedrichshafen.

Zwei Entwicklungen am Lehrgebiet Rechnerarchitektur der FernUniversität in Hagen können das Fliegen sicherer machen: ein Flugassistenzsystem, das bei einem...

Im Focus: HIGH-TOOL unterstützt Verkehrsplanung in Europa

Forschung am Karlsruher Institut für Technologie (KIT) unterstützt die Europäische Kommission bei der Verkehrsplanung: Anhand des neuen Modells HIGH-TOOL lässt sich bewerten, wie verkehrspolitische Maßnahmen langfristig auf Wirtschaft, Gesellschaft und Umwelt wirken. HIGH-TOOL ist ein frei zugängliches Modell mit Modulen für Demografie, Wirtschaft und Ressourcen, Fahrzeugbestand, Nachfrage im Personen- und Güterverkehr sowie Umwelt und Sicherheit. An dem nun erfolgreich abgeschlossenen EU-Projekt unter der Koordination des KIT waren acht Partner aus fünf Ländern beteiligt.

Forschung am Karlsruher Institut für Technologie (KIT) unterstützt die Europäische Kommission bei der Verkehrsplanung: Anhand des neuen Modells HIGH-TOOL lässt...

Im Focus: Zinn in der Photodiode: nächster Schritt zur optischen On-Chip-Datenübertragung

Schon lange suchen Wissenschaftler nach einer geeigneten Lösung, um optische Komponenten auf einem Computerchip zu integrieren. Doch Silizium und Germanium allein – die stoffliche Basis der Chip-Produktion – sind als Lichtquelle kaum geeignet. Jülicher Physiker haben nun gemeinsam mit internationalen Partnern eine Diode vorgestellt, die neben Silizium und Germanium zusätzlich Zinn enthält, um die optischen Eigenschaften zu verbessern. Das Besondere daran: Da alle Elemente der vierten Hauptgruppe angehören, sind sie mit der bestehenden Silizium-Technologie voll kompatibel.

Schon lange suchen Wissenschaftler nach einer geeigneten Lösung, um optische Komponenten auf einem Computerchip zu integrieren. Doch Silizium und Germanium...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Aufbruch: Forschungsmethoden in einer personalisierten Medizin

24.02.2017 | Veranstaltungen

Österreich erzeugt erstmals Erdgas aus Sonnen- und Windenergie

24.02.2017 | Veranstaltungen

Big Data Centrum Ostbayern-Südböhmen startet Veranstaltungsreihe

23.02.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Fraunhofer HHI auf dem Mobile World Congress mit VR- und 5G-Technologien

24.02.2017 | Messenachrichten

MWC 2017: 5G-Hauptstadt Berlin

24.02.2017 | Messenachrichten

Auf der molekularen Streckbank

24.02.2017 | Biowissenschaften Chemie