Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Prekäres Gleichgewicht im Immunsystem

11.04.2014

Zuviel eines Proteins namens c-FLIPR kann Autoimmunkrankheiten auslösen

Ausgerechnet ein Vorgang mit dem Namen „zellulärer Selbstmord“ ist für das Überleben des gesamten Körpers entscheidend. Ein Protein namens c-FLIPR spielt bei der Steuerung dieses Prozesses, der als „Apoptose“ bezeichnet wird, eine Schlüsselrolle.


Entzündetes Lungengewebe mit eingewanderten Immunzellen, deren Zellkerne blau angefärbt wurden.

HZI/Pils

Wissenschaftler des Helmholtz-Zentrums für Infektionsforschung (HZI) haben nun die Bedeutung von c-FLIPR für das Immunsystem genauer beschrieben: Ist das Molekül im Überschuss vorhanden, können Mäuse zwar Infektionskrankheiten besser bekämpfen, entwickeln im Alter jedoch Autoimmunkrankheiten. Ursache für beide Effekte ist die hemmende Wirkung von c-FLIPR auf die Apoptose.

Durch Apoptose beseitigen sich krankhaft veränderte oder nicht mehr benötigte Zellen selbst, bevor sie für den Organismus zur Gefahr werden – auf zellulärer Ebene gehört der Tod zum Leben. Störungen dieses Vorgangs können unter anderem Krebs oder Immunschwächen zur Folge haben, aber auch Autoimmunerkrankungen, bei denen Immunzellen den eigenen Körper angreifen.

Der HZI-Wissenschaftler Prof. Ingo Schmitz und sein Team untersuchen, wie die Apoptose im Immunsystem reguliert wird. Gemeinsam mit Forschern der Otto-von-Guericke-Universität Magdeburg und des Helmholtz Zentrums München haben sie die Bedeutung eines zentralen Proteins in diesem Geschehen aufgeklärt. Ihre Ergebnisse veröffentlichten die Forscher in der Zeitschrift „Cell Death & Disease“. Sogenannte c-FLIP-Proteine hemmen Prozesse, die zur Apoptose führen können. Das ist bei der Reaktion auf Krankheitserreger vorübergehend wichtig, damit sich Lymphozyten, eine Sorte von Immunzellen, ausreichend vermehren können. Gegen Ende der Immunantwort, wenn die Lymphozyten ihre Aufgabe erfüllt und den Krankheitserreger erfolgreich beseitigt haben, wird c-FLIP normalerweise abgebaut. Dadurch wird Apoptose wieder möglich, die Lymphozyten sterben und sichern das Gleichgewicht im Immunsystem.

Die HZI-Forscher interessierten sich nun für die genaue Funktion einer bestimmten Proteinvariante namens c-FLIPR. Deshalb untersuchten sie anhand von Mäusen, was passiert, wenn dieses Protein in Lymphozyten und anderen Blutzellen ständig vorhanden ist. Während der Apoptose-Hemmer in jungen Mäusen keine Auffälligkeiten verursacht, bot sich den Forschern in älteren Tieren ein anderes Bild: „Die Zusammensetzung der Lymphozyten war deutlich verändert“, sagt Schmitz. „Darüber hinaus waren die Immunzellen stark aktiviert.“

Im Körper ist die Überaktivierung deutlich zu erkennen. So fanden die Forscher Immunmoleküle, die das eigene Gewebe angreifen, sogenannte Autoantikörper, in den Nieren und der Lunge. In den Nieren entdeckten sie zudem schädliche Proteinablagerungen. Auch die Veränderungen im Lungengewebe deuten darauf hin, dass das Immunsystem den eigenen Körper angreift, wenn c-FLIPR übermäßig vorhanden ist. „Immunzellen wandern in die Lunge ein und greifen dort das Gewebe an“, sagt Schmitz. Diese Symptome beobachteten Ärzte typischerweise bei der menschlichen Autoimmunerkrankung Systemischer Lupus erythematodes.

Vergangenes Jahr hatten die HZI-Wissenschaftler bereits herausgefunden, dass Zellen besser bakterielle Infektionen bekämpfen können, wenn c-FLIPR dauerhaft angeschaltet ist. Den zellulären Selbstmord zu hemmen, hat bei akuten Infektionen also positive Folgen, führt auf Dauer aber zu Autoimmunreaktionen. „c-FLIPR ist wichtig für das Gleichgewicht im Immunsystem. Möglicherweise könnte man hier mit geeigneten Wirkstoffen therapeutisch eingreifen, wenn das Immunsystem aus dem Takt gekommen ist“, sagt Schmitz.

Originalpublikation
Frida Ewald, Michaela Annemann, Marina C. Pils, Carlos Plaza-Sirvent, Frauke Neff, Christian Erck, Dirk Reinhold, Ingo Schmitz
Constitutive expression of murine c-FLIPR causes autoimmunity in aged mice
Cell Death & Disease, 2014

Die Arbeitsgruppe „Systemorientierte Immunologie und Entzündungsforschung“ untersucht molekulare Prozesse in Immunzellen, die diese tolerant gegenüber dem eigenen Körper machen. Dazu zählt vor allem das „Selbstmordprogramm“ Apoptose.

Das Helmholtz-Zentrum für Infektionsforschung:
Am Helmholtz-Zentrum für Infektionsforschung (HZI) untersuchen Wissenschaftler die Mechanismen von Infektionen und ihrer Abwehr. Was Bakterien oder Viren zu Krankheitserregern macht: Das zu verstehen soll den Schlüssel zur Entwicklung neuer Medikamente und Impfstoffe liefern.
http://www.helmholtz-hzi.de

Weitere Informationen:

http://www.helmholtz-hzi.de/de/aktuelles/news/ansicht/article/complete/prekaeres... - Diese Meldung auf www.helmholtz-hzi.de

Dr. Birgit Manno | Helmholtz-Zentrum

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Mit Barcodes der Zellentwicklung auf der Spur
17.08.2017 | Deutsches Krebsforschungszentrum

nachricht Magenkrebs: Auch Bakterien können Auslöser sein
17.08.2017 | Charité – Universitätsmedizin Berlin

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Mit Barcodes der Zellentwicklung auf der Spur

Darüber, wie sich Blutzellen entwickeln, existieren verschiedene Auffassungen – sie basieren jedoch fast ausschließlich auf Experimenten, die lediglich Momentaufnahmen widerspiegeln. Wissenschaftler des Deutschen Krebsforschungszentrums stellen nun im Fachjournal Nature eine neue Technik vor, mit der sich das Geschehen dynamisch erfassen lässt: Mithilfe eines „Zufallsgenerators“ versehen sie Blutstammzellen mit genetischen Barcodes und können so verfolgen, welche Zelltypen aus der Stammzelle hervorgehen. Diese Technik erlaubt künftig völlig neue Einblicke in die Entwicklung unterschiedlicher Gewebe sowie in die Krebsentstehung.

Wie entsteht die Vielzahl verschiedener Zelltypen im Blut? Diese Frage beschäftigt Wissenschaftler schon lange. Nach der klassischen Vorstellung fächern sich...

Im Focus: Fizzy soda water could be key to clean manufacture of flat wonder material: Graphene

Whether you call it effervescent, fizzy, or sparkling, carbonated water is making a comeback as a beverage. Aside from quenching thirst, researchers at the University of Illinois at Urbana-Champaign have discovered a new use for these "bubbly" concoctions that will have major impact on the manufacturer of the world's thinnest, flattest, and one most useful materials -- graphene.

As graphene's popularity grows as an advanced "wonder" material, the speed and quality at which it can be manufactured will be paramount. With that in mind,...

Im Focus: Forscher entwickeln maisförmigen Arzneimittel-Transporter zum Inhalieren

Er sieht aus wie ein Maiskolben, ist winzig wie ein Bakterium und kann einen Wirkstoff direkt in die Lungenzellen liefern: Das zylinderförmige Vehikel für Arzneistoffe, das Pharmazeuten der Universität des Saarlandes entwickelt haben, kann inhaliert werden. Professor Marc Schneider und sein Team machen sich dabei die körpereigene Abwehr zunutze: Makrophagen, die Fresszellen des Immunsystems, fressen den gesundheitlich unbedenklichen „Nano-Mais“ und setzen dabei den in ihm enthaltenen Wirkstoff frei. Bei ihrer Forschung arbeiteten die Pharmazeuten mit Forschern der Medizinischen Fakultät der Saar-Uni, des Leibniz-Instituts für Neue Materialien und der Universität Marburg zusammen Ihre Forschungsergebnisse veröffentlichten die Wissenschaftler in der Fachzeitschrift Advanced Healthcare Materials. DOI: 10.1002/adhm.201700478

Ein Medikament wirkt nur, wenn es dort ankommt, wo es wirken soll. Wird ein Mittel inhaliert, muss der Wirkstoff in der Lunge zuerst die Hindernisse...

Im Focus: Exotische Quantenzustände: Physiker erzeugen erstmals optische „Töpfe" für ein Super-Photon

Physikern der Universität Bonn ist es gelungen, optische Mulden und komplexere Muster zu erzeugen, in die das Licht eines Bose-Einstein-Kondensates fließt. Die Herstellung solch sehr verlustarmer Strukturen für Licht ist eine Voraussetzung für komplexe Schaltkreise für Licht, beispielsweise für die Quanteninformationsverarbeitung einer neuen Computergeneration. Die Wissenschaftler stellen nun ihre Ergebnisse im Fachjournal „Nature Photonics“ vor.

Lichtteilchen (Photonen) kommen als winzige, unteilbare Portionen vor. Viele Tausend dieser Licht-Portionen lassen sich zu einem einzigen Super-Photon...

Im Focus: Exotic quantum states made from light: Physicists create optical “wells” for a super-photon

Physicists at the University of Bonn have managed to create optical hollows and more complex patterns into which the light of a Bose-Einstein condensate flows. The creation of such highly low-loss structures for light is a prerequisite for complex light circuits, such as for quantum information processing for a new generation of computers. The researchers are now presenting their results in the journal Nature Photonics.

Light particles (photons) occur as tiny, indivisible portions. Many thousands of these light portions can be merged to form a single super-photon if they are...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Einblicke ins menschliche Denken

17.08.2017 | Veranstaltungen

Eröffnung der INC.worX-Erlebniswelt während der Technologie- und Innovationsmanagement-Tagung 2017

16.08.2017 | Veranstaltungen

Sensibilisierungskampagne zu Pilzinfektionen

15.08.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Graduiertenschule HyPerCells entwickelt hocheffiziente Perowskit- Dünnschichtsolarzelle

17.08.2017 | Energie und Elektrotechnik

Forschungsprojekt zu optimierten Oberflächen von Metallpulver-Spritzguss-Werkzeugen

17.08.2017 | Verfahrenstechnologie

Fernerkundung für den Naturschutz

17.08.2017 | Ökologie Umwelt- Naturschutz