Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Positives Feedback für Tumore - Regulatorprotein setzt ungebremste Zellteilung in Gang

21.12.2011
Krebszellen sind praktisch unsterblich: Die unbegrenzte Teilungsfähigkeit - die sogenannte Immortalisierung - ist ein zentrales Merkmal von Tumorzellen.

Normalerweise verhindern Zellen derart ungebremstes Wachstum durch strenge Kontrollmechanismen, die wuchernde Zellen vorzeitig altern oder absterben lassen.

Wissenschaftler um Professor Heiko Hermeking und Dr. Antje Menssen vom Pathologischen Institut der LMU konnten nun aufklären, wie das zentrale Regulatorprotein c-MYC diese Kontrolle unterläuft und so zur Krebsentstehung beiträgt: Hohe c-MYC-Konzentrationen, welche in den meisten Tumorarten vorliegen, aktivieren das Enzym SIRT1, das Zellalterung und Zelltod verhindert. Gleichzeitig wird eine positive Feedbackschleife in Gang gesetzt, durch die c-MYC und SIRT1 immer weiter aktiviert werden.

Normale Zellen unterbrechen die Feedbackschleife, indem sie das c-MYC Gen bei fehlenden Wachstumssignalen inaktivieren – in Tumorzellen funktioniert dies nicht mehr, und es kommt zur Immortalisierung. „Unsere Befunde legen nahe, dass Tumorarten wie etwa Lymphome, Dickdarm-, oder Brustkrebs, bei denen c-MYC eine zentrale Rolle spielt, besonders stark auf eine pharmakologische Inhibition der an der Feedbackkette beteiligten Enzyme reagieren sollten“, erläutert Menssen die medizinische Bedeutung der Ergebnisse. Insbesondere könnte eine kombinierte Therapie, die an verschiedenen Stellen der Feedbackschleife ansetzt, den Krebs effektiver bekämpfen. (PNAS 19.-23.12)

Das c-MYC Protein steuert zahlreiche grundlegende Prozesse wie Zellwachstum und Zellteilung und ist daher für Prozesse, bei denen sich Zellen vermehren müssen, wie etwa Embryonalentwicklung und Blutbildung, essenziell. Zuviel c-MYC allerdings hat fatale Folgen: Eine permanente c-MYC-Produktion kann Zellen immortalisieren und zur Krebsentstehung beitragen. Deshalb wird das c-MYC-Gen, das für die Bildung des entsprechenden Proteins verantwortlich ist, in normalen Zellen sehr streng kontrolliert: Nur wenn eine Zelle positive Wachstumssignale erhält, wird das Gen aktiviert. Falls diese Sicherung versagt, gibt es sogar noch einen zweiten zellinternen Kontrollmechanismus: Erhöhte c-MYC-Konzentrationen lösen die vorzeitige Alterung der Zelle – die sogenannte zelluläre Seneszenz – sowie den programmierten Zelltod aus. In Tumorzellen funktioniert diese Qualitätssicherung allerdings oft nicht – in einigen Tumoren und Zelltypen wurde sogar beobachtet, dass die Sicherungsmechanismen durch c-MYC selbst unterdrückt werden. „Bisher war weitgehend unklar, wie c-MYC dies schafft“, sagt Hermeking. Um die beteiligten Mechanismen aufzuklären, nahmen die Wissenschaftler das Enzym SIRT1 als möglichen Komplizen von c-MYC ins Visier. „SIRT1 erschien uns als geeigneter Kandidat, da für ein verwandtes Enzym bereits gezeigt wurde, dass es in niederen Organismen die Lebensdauer von Zellen verlängern kann. In menschlichen Zellen hemmt SIRT1 einen Regulator, der Zellalterung und Zelltod vorantreibt“, so Hermeking.

Tatsächlich konnte das Wissenschaftler-Team, zu dem auch Molekularbiologen von der Universität Aachen und dem Karolinska-Institut in Stockholm gehörten, im Detail zeigen, dass c-MYC das Enzym SIRT1 sogar auf mehreren Wegen aktiviert: Zum einen über die Aktivierung des Enzyms NAMPT (Nicotinamid Phosphoribosyltransferase), das einen für die Funktion von SIRT1 notwendigen Baustein bereitstellt. Zum anderen hemmt c-MYC einen Inhibitor von SIRT1 und verschafft SIRT1 so freie Bahn. SIRT1 wiederum schließt den Kreis, indem es dafür sorgt, dass der c-MYC-Abbau gebremst wird - so entsteht eine positive Feedback-Schleife, in der c-MYC und SIRT1 immer weiter aktiviert werden und letztlich c-MYC in der Zelle akkumuliert.

In den meisten Tumoren wird das c-MYC Protein in großen Mengen produziert. Von bestimmten Tumoren wie Lymphomen, Dickdarmkrebs oder Brustkrebs weiß man, dass c-MYC eine kausale Rolle für die Krebsentstehung spielt, da das c-MYC kodierende Gen verändert vorliegt, beziehungsweise Faktoren, die es regulieren aufgrund von Mutationen permanent aktiv sind. Für die Entwicklung neuer Therapien gegen diese Krankheiten sind die Ergebnisse der Wissenschaftler hoch interessant, da diese Tumore besonders stark auf eine medikamentöse Hemmung der beiden Enzyme SIRT1 oder NAMPT reagieren sollten. Interessanterweise haben Studien in den letzten Jahren gezeigt, dass in verschiedenen Tumoren auch der NAMPT-Level erhöht ist. Ein chemischer Inhibitor von NAMPT wird bereits in klinischen Studien getestet. „Durch unsere Untersuchung ist nun klar geworden, dass die von c-MYC in Gang gesetzte Feedbackschleife der Grund für die erhöhte Produktion von NAMPT sein könnte. Eine kombinierte Therapie, mit der die Funktion von SIRT1 und NAMPT gehemmt wird, könnte daher synergistisch wirken und neue Behandlungsmöglichkeiten eröffnen“, erläutert Menssen.

Die lebensverlängernde Wirkung eines täglichen Glases Rotwein dagegen wird durch die Erkenntnisse der Wissenschaftler infrage gestellt: Bisher wurde die pharmakologische Aktivierung von SIRT1 durch das im Rotwein enthaltene Resveratrol als möglicherweise gesundheitsfördernd angesehen. Teilweise wird die Anwendung von SIRT1-Aktivatoren wie Resveratrol sogar kommerziell verfolgt - etwa um den Alterungsprozess zu verlangsamen oder um Fettleibigkeit und Diabetes vorzubeugen. „Vor dem Hintergrund unserer Ergebnisse sollten derartige Aktivatoren nur nach weiteren Studien verwendet werden", mahnt Hermeking zur Vorsicht.

Das Projekt wurde durch ein Habilitationsstipendium der Exzellenzinitiative der LMU für Dr. Antje Menssen, sowie von der Deutschen Krebshilfe e.V. und von der Max-Planck-Gesellschaft gefördert. (göd)

Publikation:
„The c-MYC oncoprotein, the NAMPT enzyme, the SIRT1-inhibitor DBC1, and the SIRT1 deacetylase form a positive feedback loop”;
A. Menssen, P. Hydbring, K. Kapelle, J. Vervoorts, J. Diebold, B. Lüscher, L.- G. Larsson, H. Hermeking;
PNAS Early Edition PNAS 19.-23.12;
doi: 10.1073/pnas.1105304109
Ansprechpartner:
Prof. Dr. Heiko Hermeking
Pathologisches Institut der LMU
Tel.: 089 / 2180 - 73 685
Fax: 089 / 2180 - 73 697
E-Mail: Heiko.Hermeking@med.uni-muenchen.de
Website: http://www.pathologie.med.uni-muenchen.de/020wissenschaft/009ag_hermeking/index.html
Dr. Antje Menssen
Pathologisches Institut der LMU
Tel.: 089 / 2180 - 73 673
E-Mail: Antje.Menssen@med.uni-muenchen.de

Luise Dirscherl | Ludwig-Maximilians-Universität M
Weitere Informationen:
http://www.med.uni-muenchen.de

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Wegweisende Erkenntnisse für die Biomedizin: NAD⁺ hilft bei Reparatur geschädigter Erbinformationen
24.03.2017 | Universität Bayreuth

nachricht Ultradünne CIGSE-Solarzellen: Nanostrukturen steigern den Wirkungsgrad
24.03.2017 | Helmholtz-Zentrum Berlin für Materialien und Energie GmbH

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Wegweisende Erkenntnisse für die Biomedizin: NAD⁺ hilft bei Reparatur geschädigter Erbinformationen

Eine internationale Forschergruppe mit dem Bayreuther Biochemiker Prof. Dr. Clemens Steegborn präsentiert in 'Science' neue, für die Biomedizin wegweisende Forschungsergebnisse zur Rolle des Moleküls NAD⁺ bei der Korrektur von Schäden am Erbgut.

Die Zellen von Menschen und Tieren können Schäden an der DNA, dem Träger der Erbinformation, bis zu einem gewissen Umfang selbst reparieren. Diese Fähigkeit...

Im Focus: Designer-Proteine falten DNA

Florian Praetorius und Prof. Hendrik Dietz von der Technischen Universität München (TUM) haben eine neue Methode entwickelt, mit deren Hilfe sie definierte Hybrid-Strukturen aus DNA und Proteinen aufbauen können. Die Methode eröffnet Möglichkeiten für die zellbiologische Grundlagenforschung und für die Anwendung in Medizin und Biotechnologie.

Desoxyribonukleinsäure – besser bekannt unter der englischen Abkürzung DNA – ist die Trägerin unserer Erbinformation. Für Prof. Hendrik Dietz und Florian...

Im Focus: Fliegende Intensivstationen: Ultraschallgeräte in Rettungshubschraubern können Leben retten

Etwa 21 Millionen Menschen treffen jährlich in deutschen Notaufnahmen ein. Im Kampf zwischen Leben und Tod zählt für diese Patienten jede Minute. Wenn sie schon kurz nach dem Unfall zielgerichtet behandelt werden können, verbessern sich ihre Überlebenschancen erheblich. Damit Notfallmediziner in solchen Fällen schnell die richtige Diagnose stellen können, kommen in den Rettungshubschraubern der DRF Luftrettung und zunehmend auch in Notarzteinsatzfahrzeugen mobile Ultraschallgeräte zum Einsatz. Experten der Deutschen Gesellschaft für Ultraschall in der Medizin e.V. (DEGUM) schulen die Notärzte und Rettungsassistenten.

Mit mobilen Ultraschallgeräten können Notärzte beispielsweise innere Blutungen direkt am Unfallort identifizieren und sie bei Bedarf auch für Untersuchungen im...

Im Focus: Gigantische Magnetfelder im Universum

Astronomen aus Bonn und Tautenburg in Thüringen beobachteten mit dem 100-m-Radioteleskop Effelsberg Galaxienhaufen, das sind Ansammlungen von Sternsystemen, heißem Gas und geladenen Teilchen. An den Rändern dieser Galaxienhaufen fanden sie außergewöhnlich geordnete Magnetfelder, die sich über viele Millionen Lichtjahre erstrecken. Sie stellen die größten bekannten Magnetfelder im Universum dar.

Die Ergebnisse werden am 22. März in der Fachzeitschrift „Astronomy & Astrophysics“ veröffentlicht.

Galaxienhaufen sind die größten gravitativ gebundenen Strukturen im Universum, mit einer Ausdehnung von etwa zehn Millionen Lichtjahren. Im Vergleich dazu ist...

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Lebenswichtige Lebensmittelchemie

23.03.2017 | Veranstaltungen

Die „Panama Papers“ aus Programmierersicht

22.03.2017 | Veranstaltungen

Über Raum, Zeit und Materie

22.03.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Preiswerte Katalysatoren finden und verstehen: Auf das Eisen kommt es an

24.03.2017 | Biowissenschaften Chemie

Neue Hoffnung für Leberkrebspatienten

24.03.2017 | Medizintechnik

Innovationslabor für neue Wege in die digitale Zukunft

24.03.2017 | Förderungen Preise