Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Positives Feedback für Tumore - Regulatorprotein setzt ungebremste Zellteilung in Gang

21.12.2011
Krebszellen sind praktisch unsterblich: Die unbegrenzte Teilungsfähigkeit - die sogenannte Immortalisierung - ist ein zentrales Merkmal von Tumorzellen.

Normalerweise verhindern Zellen derart ungebremstes Wachstum durch strenge Kontrollmechanismen, die wuchernde Zellen vorzeitig altern oder absterben lassen.

Wissenschaftler um Professor Heiko Hermeking und Dr. Antje Menssen vom Pathologischen Institut der LMU konnten nun aufklären, wie das zentrale Regulatorprotein c-MYC diese Kontrolle unterläuft und so zur Krebsentstehung beiträgt: Hohe c-MYC-Konzentrationen, welche in den meisten Tumorarten vorliegen, aktivieren das Enzym SIRT1, das Zellalterung und Zelltod verhindert. Gleichzeitig wird eine positive Feedbackschleife in Gang gesetzt, durch die c-MYC und SIRT1 immer weiter aktiviert werden.

Normale Zellen unterbrechen die Feedbackschleife, indem sie das c-MYC Gen bei fehlenden Wachstumssignalen inaktivieren – in Tumorzellen funktioniert dies nicht mehr, und es kommt zur Immortalisierung. „Unsere Befunde legen nahe, dass Tumorarten wie etwa Lymphome, Dickdarm-, oder Brustkrebs, bei denen c-MYC eine zentrale Rolle spielt, besonders stark auf eine pharmakologische Inhibition der an der Feedbackkette beteiligten Enzyme reagieren sollten“, erläutert Menssen die medizinische Bedeutung der Ergebnisse. Insbesondere könnte eine kombinierte Therapie, die an verschiedenen Stellen der Feedbackschleife ansetzt, den Krebs effektiver bekämpfen. (PNAS 19.-23.12)

Das c-MYC Protein steuert zahlreiche grundlegende Prozesse wie Zellwachstum und Zellteilung und ist daher für Prozesse, bei denen sich Zellen vermehren müssen, wie etwa Embryonalentwicklung und Blutbildung, essenziell. Zuviel c-MYC allerdings hat fatale Folgen: Eine permanente c-MYC-Produktion kann Zellen immortalisieren und zur Krebsentstehung beitragen. Deshalb wird das c-MYC-Gen, das für die Bildung des entsprechenden Proteins verantwortlich ist, in normalen Zellen sehr streng kontrolliert: Nur wenn eine Zelle positive Wachstumssignale erhält, wird das Gen aktiviert. Falls diese Sicherung versagt, gibt es sogar noch einen zweiten zellinternen Kontrollmechanismus: Erhöhte c-MYC-Konzentrationen lösen die vorzeitige Alterung der Zelle – die sogenannte zelluläre Seneszenz – sowie den programmierten Zelltod aus. In Tumorzellen funktioniert diese Qualitätssicherung allerdings oft nicht – in einigen Tumoren und Zelltypen wurde sogar beobachtet, dass die Sicherungsmechanismen durch c-MYC selbst unterdrückt werden. „Bisher war weitgehend unklar, wie c-MYC dies schafft“, sagt Hermeking. Um die beteiligten Mechanismen aufzuklären, nahmen die Wissenschaftler das Enzym SIRT1 als möglichen Komplizen von c-MYC ins Visier. „SIRT1 erschien uns als geeigneter Kandidat, da für ein verwandtes Enzym bereits gezeigt wurde, dass es in niederen Organismen die Lebensdauer von Zellen verlängern kann. In menschlichen Zellen hemmt SIRT1 einen Regulator, der Zellalterung und Zelltod vorantreibt“, so Hermeking.

Tatsächlich konnte das Wissenschaftler-Team, zu dem auch Molekularbiologen von der Universität Aachen und dem Karolinska-Institut in Stockholm gehörten, im Detail zeigen, dass c-MYC das Enzym SIRT1 sogar auf mehreren Wegen aktiviert: Zum einen über die Aktivierung des Enzyms NAMPT (Nicotinamid Phosphoribosyltransferase), das einen für die Funktion von SIRT1 notwendigen Baustein bereitstellt. Zum anderen hemmt c-MYC einen Inhibitor von SIRT1 und verschafft SIRT1 so freie Bahn. SIRT1 wiederum schließt den Kreis, indem es dafür sorgt, dass der c-MYC-Abbau gebremst wird - so entsteht eine positive Feedback-Schleife, in der c-MYC und SIRT1 immer weiter aktiviert werden und letztlich c-MYC in der Zelle akkumuliert.

In den meisten Tumoren wird das c-MYC Protein in großen Mengen produziert. Von bestimmten Tumoren wie Lymphomen, Dickdarmkrebs oder Brustkrebs weiß man, dass c-MYC eine kausale Rolle für die Krebsentstehung spielt, da das c-MYC kodierende Gen verändert vorliegt, beziehungsweise Faktoren, die es regulieren aufgrund von Mutationen permanent aktiv sind. Für die Entwicklung neuer Therapien gegen diese Krankheiten sind die Ergebnisse der Wissenschaftler hoch interessant, da diese Tumore besonders stark auf eine medikamentöse Hemmung der beiden Enzyme SIRT1 oder NAMPT reagieren sollten. Interessanterweise haben Studien in den letzten Jahren gezeigt, dass in verschiedenen Tumoren auch der NAMPT-Level erhöht ist. Ein chemischer Inhibitor von NAMPT wird bereits in klinischen Studien getestet. „Durch unsere Untersuchung ist nun klar geworden, dass die von c-MYC in Gang gesetzte Feedbackschleife der Grund für die erhöhte Produktion von NAMPT sein könnte. Eine kombinierte Therapie, mit der die Funktion von SIRT1 und NAMPT gehemmt wird, könnte daher synergistisch wirken und neue Behandlungsmöglichkeiten eröffnen“, erläutert Menssen.

Die lebensverlängernde Wirkung eines täglichen Glases Rotwein dagegen wird durch die Erkenntnisse der Wissenschaftler infrage gestellt: Bisher wurde die pharmakologische Aktivierung von SIRT1 durch das im Rotwein enthaltene Resveratrol als möglicherweise gesundheitsfördernd angesehen. Teilweise wird die Anwendung von SIRT1-Aktivatoren wie Resveratrol sogar kommerziell verfolgt - etwa um den Alterungsprozess zu verlangsamen oder um Fettleibigkeit und Diabetes vorzubeugen. „Vor dem Hintergrund unserer Ergebnisse sollten derartige Aktivatoren nur nach weiteren Studien verwendet werden", mahnt Hermeking zur Vorsicht.

Das Projekt wurde durch ein Habilitationsstipendium der Exzellenzinitiative der LMU für Dr. Antje Menssen, sowie von der Deutschen Krebshilfe e.V. und von der Max-Planck-Gesellschaft gefördert. (göd)

Publikation:
„The c-MYC oncoprotein, the NAMPT enzyme, the SIRT1-inhibitor DBC1, and the SIRT1 deacetylase form a positive feedback loop”;
A. Menssen, P. Hydbring, K. Kapelle, J. Vervoorts, J. Diebold, B. Lüscher, L.- G. Larsson, H. Hermeking;
PNAS Early Edition PNAS 19.-23.12;
doi: 10.1073/pnas.1105304109
Ansprechpartner:
Prof. Dr. Heiko Hermeking
Pathologisches Institut der LMU
Tel.: 089 / 2180 - 73 685
Fax: 089 / 2180 - 73 697
E-Mail: Heiko.Hermeking@med.uni-muenchen.de
Website: http://www.pathologie.med.uni-muenchen.de/020wissenschaft/009ag_hermeking/index.html
Dr. Antje Menssen
Pathologisches Institut der LMU
Tel.: 089 / 2180 - 73 673
E-Mail: Antje.Menssen@med.uni-muenchen.de

Luise Dirscherl | Ludwig-Maximilians-Universität M
Weitere Informationen:
http://www.med.uni-muenchen.de

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Kieselalge in der Antarktis liest je nach Umweltbedingungen verschiedene Varianten seiner Gene ab
17.01.2017 | Stiftung Zoologisches Forschungsmuseum Alexander Koenig, Leibniz-Institut für Biodiversität der Tiere

nachricht Proteinforschung: Der Computer als Mikroskop
16.01.2017 | Ruhr-Universität Bochum

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Erforschung von Elementarteilchen in Materialien

Laseranregung von Semimetallen ermöglicht die Erzeugung neuartiger Quasiteilchen in Festkörpersystemen sowie ultraschnelle Schaltung zwischen verschiedenen Zuständen.

Die Untersuchung der Eigenschaften fundamentaler Teilchen in Festkörpersystemen ist ein vielversprechender Ansatz für die Quantenfeldtheorie. Quasiteilchen...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

Im Focus: Mit solaren Gebäudehüllen Architektur gestalten

Solarthermie ist in der breiten Öffentlichkeit derzeit durch dunkelblaue, rechteckige Kollektoren auf Hausdächern besetzt. Für ästhetisch hochwertige Architektur werden Technologien benötigt, die dem Architekten mehr Gestaltungsspielraum für Niedrigst- und Plusenergiegebäude geben. Im Projekt »ArKol« entwickeln Forscher des Fraunhofer ISE gemeinsam mit Partnern aktuell zwei Fassadenkollektoren für solare Wärmeerzeugung, die ein hohes Maß an Designflexibilität erlauben: einen Streifenkollektor für opake sowie eine solarthermische Jalousie für transparente Fassadenanteile. Der aktuelle Stand der beiden Entwicklungen wird auf der BAU 2017 vorgestellt.

Im Projekt »ArKol – Entwicklung von architektonisch hoch integrierten Fassadekollektoren mit Heat Pipes« entwickelt das Fraunhofer ISE gemeinsam mit Partnern...

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

Im Focus: Mit Bindfaden und Schere - die Chromosomenverteilung in der Meiose

Was einmal fest verbunden war sollte nicht getrennt werden? Nicht so in der Meiose, der Zellteilung in der Gameten, Spermien und Eizellen entstehen. Am Anfang der Meiose hält der ringförmige Proteinkomplex Kohäsin die Chromosomenstränge, auf denen die Bauanleitung des Körpers gespeichert ist, zusammen wie ein Bindfaden. Damit am Ende jede Eizelle und jedes Spermium nur einen Chromosomensatz erhält, müssen die Bindfäden aufgeschnitten werden. Forscher vom Max-Planck-Institut für Biochemie zeigen in der Bäckerhefe wie ein auch im Menschen vorkommendes Kinase-Enzym das Aufschneiden der Kohäsinringe kontrolliert und mit dem Austritt aus der Meiose und der Gametenbildung koordiniert.

Warum sehen Kinder eigentlich ihren Eltern ähnlich? Die meisten Zellen unseres Körpers sind diploid, d.h. sie besitzen zwei Kopien von jedem Chromosom – eine...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Über intelligente IT-Systeme und große Datenberge

17.01.2017 | Veranstaltungen

Aquakulturen und Fangquoten – was hilft gegen Überfischung?

16.01.2017 | Veranstaltungen

14. BF21-Jahrestagung „Mobilität & Kfz-Versicherung im Fokus“

12.01.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

moove und Sony Lifelog machen mobil

17.01.2017 | Unternehmensmeldung

Erforschung von Elementarteilchen in Materialien

17.01.2017 | Physik Astronomie

Wasser - der heimliche Treiber des Kohlenstoffkreislaufs?

17.01.2017 | Geowissenschaften