Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Positionsbestimmung von Muskelproteinen

20.07.2012
Max-Planck-Wissenschaftler beobachten Grundlage der Muskelbewegung mit bislang unerreichter Schärfe

Muskelkontraktion und viele andere Bewegungsprozesse werden durch das Zusammenspiel zwischen Myosin- und Aktinfilamenten gesteuert. Zwei weitere Proteine, Tropomyosin und Troponin regulieren die Bindung des Myosins an Aktin.


Schematische Zeichnung des Sarkomers. Die Z-Scheibe ist in schwarz dargestellt, Aktin in grün/grau , Tropomyosin in blau und Myosin in rot.
© MPI für molekulare Physiologie

Wie genau diese Muskelproteine interagieren, ist zwar in theoretischen Modellen beschrieben, allerdings bisher nie im Detail beobachtet worden. Stefan Raunser und Elmar Behrmann vom Max-Planck-Institut für molekulare Physiologie in Dortmund ist es nun gelungen, den Aktin-Myosin-Tropomyosin-Komplex mit bisher unerreichter Genauigkeit von 0.8 Nanometern sichtbar zu machen - was einer Auflösung von weniger als einem Millionstel Millimeter entspricht. Dies ermöglicht es erstmals, die Proteine innerhalb des Komplexes korrekt zu positionieren und die Vorgänge bei der Muskelkontraktion zu analysieren. Mit diesen Erkenntnissen könnte aufgeklärt werden, wie sich genetisch bedingte Veränderungen des Aktin-Myosin-Tropomyosin-Komplexes auf manche vererbbare Herzerkrankungen auswirken.

Die zentrale funktionelle Einheit, das Sarkomer, eines Muskels besteht aus Aktin-, Myosin- und Tropomyosin-Proteinen. Damit sich ein Muskel zusammenziehen kann, muss das Myosin an den fadenförmigen Aktinmolekülen entlang gleiten. Zusammen mit Troponin reguliert Tropomyosin die Muskelkontraktion, indem es steuert wann Myosin an Aktin gebunden ist. Im Ruhezustand blockieren Tropomyosin und Troponin die Bindungsstelle für Myosin am Aktinfilament. Der Myosinkopf befindet sich dann in 90 Grad Stellung. Erst durch einströmendes Calcium, das an die Regulationsproteine andockt, wird die Bindungsstelle am Aktinfilament frei gelegt. Der Myosinkopf dockt an diese an, ändert seine Konformation und knickt gelenkartig ab, wobei er das Aktin mit sich zieht. Das aneinander Vorbeigleiten der Filamente führt zu einer Verkürzung des Sarkomers und somit zum Zusammenziehen des Muskels.

Die diesem Modell zugrundeliegende Wechselwirkung zwischen Aktin, Myosin und Tropomyosin konnten Wissenschaftler des Max-Planck-Instituts für molekulare Physiologie in Zusammenarbeit mit Wissenschaftlern der Medizinischen Hochschule Hannover, der Ruhr-Uni Bochum und der University of Texas in Houston, nun erstmals im Detail zeigen. Dank der verbesserten technischen Möglichkeiten im Bereich der Elektronenmikroskopie erhalten Stefan Raunser und seine Kollegen erstmals einen genauen Einblick in die strukturellen Elemente des Muskels. „Ein wichtiger Schritt um das Zusammenspiel der einzelnen Proteine innerhalb der funktionellen Strukturen des Muskels zu verstehen“, sagt Raunser.

So bestimmten sie beispielsweise die genaue Position von Tropomyosin auf dem Aktin-Filament im Myosin-gebundenen Zustand und zeigten durch die im Detail sichtbar gemachte Struktur des Komplexes, dass Aktin tatsächlich Konformationsänderungen in Myosin bewirkt. Vergleiche mit Moysinstrukturen in anderen Zuständen ermöglichen es den Forschern, das Zusammenspiel von Myosin und Aktin während der Muskelkontraktion zu beschreiben. „Wir haben so etwas wie eine Landkarte für Biochemiker gebastelt. Für sie wird es durch unsere Ergebnisse künftig leichter Prozesse und Abläufe innerhalb der Muskulatur zu verstehen“, so Raunser.

Darüber hinaus sind die Ergebnisse aus medizinischer Sicht von hoher Relevanz. Das menschliche Herz ist der wichtigste Muskel im menschlichen Körper, funktioniert er nicht optimal, so kann dies zum Tod führen. Fehlfunktionen innerhalb des Herzens hängen oft mit Punktmutationen zusammen. Die Aufnahmen der Max-Planck-Forscher ermöglichen nun erstmals diese Mutationen genau zu positionieren. „Die genaue Position der Mutationen zu erkennen ist eine Grundvoraussetzung um Therapien für solche Herzerkrankungen zu entwickeln“, sagt Stefan Raunser.

Ansprechpartner

Dr. Stefan Raunser
Max-Planck-Institut für molekulare Physiologie
Telefon: +49 231 133-2356
Email: stefan.raunser@­mpi-dortmund.mpg.de
Dr. Peter Herter
Max-Planck-Institut für molekulare Physiologie
Telefon: +49 231 133-2500
Fax: +49 231 133-2599
Email: peter.herter@­mpi-dortmund.mpg.de

Originalveröffentlichung
Behrmann, Müller, Penczek, Mannherz, Manstein und Raunser
Structure of the Rigor Actin-Tropomyosin-Myosin Complex
Cell,20 July 2012

Dr. Stefan Raunser | Max-Planck-Institut
Weitere Informationen:
http://www.mpg.de/5897741/Muskelkontraktion

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Antibiotikaresistente Erreger in Haushaltsgeräten
16.02.2018 | Hochschule Rhein-Waal

nachricht Stammbaum der Tagfalter erstmalig umfassend neu aufgestellt
16.02.2018 | Stiftung Zoologisches Forschungsmuseum Alexander Koenig, Leibniz-Institut für Biodiversität der Tiere

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Erste integrierte Schaltkreise (IC) aus Plastik

Erstmals ist es einem Forscherteam am Max-Planck-Institut (MPI) für Polymerforschung in Mainz gelungen, einen integrierten Schaltkreis (IC) aus einer monomolekularen Schicht eines Halbleiterpolymers herzustellen. Dies erfolgte in einem sogenannten Bottom-Up-Ansatz durch einen selbstanordnenden Aufbau.

In diesem selbstanordnenden Aufbauprozess ordnen sich die Halbleiterpolymere als geordnete monomolekulare Schicht in einem Transistor an. Transistoren sind...

Im Focus: Quantenbits per Licht übertragen

Physiker aus Princeton, Konstanz und Maryland koppeln Quantenbits und Licht

Der Quantencomputer rückt näher: Neue Forschungsergebnisse zeigen das Potenzial von Licht als Medium, um Informationen zwischen sogenannten Quantenbits...

Im Focus: Demonstration of a single molecule piezoelectric effect

Breakthrough provides a new concept of the design of molecular motors, sensors and electricity generators at nanoscale

Researchers from the Institute of Organic Chemistry and Biochemistry of the CAS (IOCB Prague), Institute of Physics of the CAS (IP CAS) and Palacký University...

Im Focus: Das VLT der ESO arbeitet erstmals wie ein 16-Meter-Teleskop

Erstes Licht für das ESPRESSO-Instrument mit allen vier Hauptteleskopen

Das ESPRESSO-Instrument am Very Large Telescope der ESO in Chile hat zum ersten Mal das kombinierte Licht aller vier 8,2-Meter-Hauptteleskope nutzbar gemacht....

Im Focus: Neuer Quantenspeicher behält Information über Stunden

Information in einem Quantensystem abzuspeichern ist schwer, sie geht meist rasch verloren. An der TU Wien erzielte man nun ultralange Speicherzeiten mit winzigen Diamanten.

Mit Quantenteilchen kann man Information speichern und manipulieren – das ist die Basis für viele vielversprechende Technologien, vom hochsensiblen...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

Auf der grünen Welle in die Zukunft des Mobilfunks

16.02.2018 | Veranstaltungen

Smart City: Interdisziplinäre Konferenz zu Solarenergie und Architektur

15.02.2018 | Veranstaltungen

Forschung für fruchtbare Böden / BonaRes-Konferenz 2018 versammelt internationale Bodenforscher

15.02.2018 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Erste integrierte Schaltkreise (IC) aus Plastik

17.02.2018 | Energie und Elektrotechnik

Stammbaum der Tagfalter erstmalig umfassend neu aufgestellt

16.02.2018 | Biowissenschaften Chemie

Neue Strategien zur Behandlung chronischer Nierenleiden kommen aus der Tierwelt

16.02.2018 | Biowissenschaften Chemie

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics