Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Poröse Materialien mit Potenzial

25.03.2014

Bundesforschungsministerium fördert deutsch-schwedisches Projekt mit über 1,2 Millionen Euro

Kristalline poröse Materialien spielen eine große Rolle in der chemischen Industrie. In ihren Poren können beispielsweise katalytische Reaktionen durchgeführt oder Moleküle und Ionen eingelagert werden. Doch wie dies geschieht und wie sich diese Materialien bilden ist weitgehend unbekannt. Das wollen Forschende der Christian-Albrechts-Universität zu Kiel (CAU) und der Universitäten Bochum, Stockholm und Uppsala mit brillanter Röntgenstrahlung ändern.


Schema der an der Uni Kiel entwickelten metallorganischen Gerüstverbindung CAU-4. Wie die winzigen Alleskönner genau funktionieren, untersucht nun ein deutsch-schwedisches Projekt.

Abbildung/Copyright: Norbert Stock

Fast 2,5 Millionen Euro Fördergelder konnten sie für das internationale Projekt einsammeln. Knapp die Hälfte kommt dabei vom Bundesministerium für Bildung und Forschung. Am Ende könnten völlig neue Materialien zur Verfügung stehen, die für neue Anwendungen maßgeschneidert wurden.

Die wichtigsten Vertreter der sogenannten mikroporösen Materialien sind Zeolithe und metallorganische Gerüstverbindungen (metal-organic frameworks, MOFs). Deren Porenöffnungen liegen im Nanometerbereich, wodurch kleinere Moleküle und Ionen in die Poren eindringen können. Durch die große Anzahl solcher Poren können gigantisch viele „Gastmoleküle“ aufgenommen werden, die mit den Porenwänden wechselwirken. Zeolithe werden vor allem bei der Rohölraffinierung, in Katalysatoren von Dieselmotoren und als Wasserenthärter in Waschmitteln eingesetzt.

„Um neue Anwendungen zu erschließen, synthetisieren wir neue mikroporöse Materialien und untersuchen deren Eigenschaften. Dabei ist es vor allem wichtig auf atomarer Ebene zu verstehen wie diese gebildet werden und auch wie diese funktionieren“, sagt Professor Norbert Stock vom Institut für Anorganische Chemie der Uni Kiel. Trotz jahrzehntelanger Bemühungen weiß man über diese Prozesse noch relativ wenig. Denkbar sei, dass neue mikroporöse Materialien auch in der Medizin eingesetzt werden: „Wirkstoffe können in die porösen Materialien eingelagert werden und dann im menschlichen Körper an einem bestimmten Zielort langsam abgegeben werden“, beschreibt Stock.

Gemeinsam mit seinem Kollegen Professor Wolfgang Bensch und Partnern der Universität Bochum will Stock nun Messzellen bauen, in denen die chemischen Reaktionen live beobachtet werden können. Sehr intensives Röntgenlicht soll dabei helfen, die Bildung der Materialien und die Wechselwirkung der Moleküle mit den Porenwänden präzise zu bestimmen. Dafür nutzen die Wissenschaftlerinnen und Wissenschaftler unter anderem die brillante Strahlung am Teilchenbeschleunigerring PETRA III im Deutschen Elektronensynchrotron (DESY) in Hamburg. Unter verschiedenen Reaktionsdrücken und -temperaturen sowie automatisierter Dosierung der Ausgangsstoffe stellen Stock und seine Kolleginnen und Kollegen dort in den neuen Reaktionszellen die neuen Materialien her. Die ersten Reaktionszellen sollen bereits in wenigen Monaten bereit stehen.

Die schwedischen Forscherinnen und Forschern aus Stockholm und Uppsala werden in Zukunft die Zellen am zurzeit im Bau befindlichen Teilchenbeschleuniger MAXLAB IV in Lund einsetzen. Dort wollen Chemikerinnen und Chemiker zusätzlich die Einlagerung von Gastmolekülen sowie die Eigenschaften dieser Systeme untersuchen.

Die am Projekt „MATsynCELL“ beteiligten Wissenschaftlerinnen und Wissenschaftler sind Teil des Röntgen-Ångström-Clusters, in dem deutsche und schwedische Einrichtungen mithilfe von Synchrotron- und Neutronenstrahlung gemeinsam an Fragestellungen der Materialwissenschaft arbeiten.

Mehr Informationen zum Röntgen-Ångström-Cluster:
www.rontgen-angstrom.eu

Ein Foto steht zum Download zur Verfügung:
http://www.uni-kiel.de/download/pm/2014/2014-082-1.jpg
Bildunterschrift: Schema der an der Uni Kiel entwickelten metallorganischen Gerüstverbindung CAU-4. In der Mitte eine Pore mit einem Durchmesser von zirka einem Nanometer. Rot dargestellt sind Sauerstoffatome, hellgrau Aluminiumatome und dunkelgrau Kohlenstoffatome. Wie die winzigen Alleskönner genau funktionieren, untersucht nun ein deutsch-schwedisches Projekt.
Abbildung/Copyright: Norbert Stock

Kontakt
Prof. Dr. Norbert Stock
Christian-Albrechts-Universität zu Kiel
Institut für Anorganische Chemie
Tel.: 0431/880-1675
E-Mail: stock@ac.uni-kiel.de

Prof. Dr. Wolfgang Bensch
Christian-Albrechts-Universität zu Kiel
Institut für Anorganische Chemie
Tel.: 0431/880-2091
E-Mail: wbensch@ac.uni-kiel.de

Dr. Boris Pawlowski | idw - Informationsdienst Wissenschaft

Weitere Berichte zu: Bildung CAU Chemiker Christian-Albrechts-Universität Dosierung Ionen Moleküle Pore Poren Zeolithe

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Designerviren stacheln Immunabwehr gegen Krebszellen an
26.05.2017 | Universität Basel

nachricht Wachstumsmechanismus der Pilze entschlüsselt
26.05.2017 | Karlsruher Institut für Technologie

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Neue Methode für die Datenübertragung mit Licht

Der steigende Bedarf an schneller, leistungsfähiger Datenübertragung erfordert die Entwicklung neuer Verfahren zur verlustarmen und störungsfreien Übermittlung von optischen Informationssignalen. Wissenschaftler der Universität Johannesburg, des Instituts für Angewandte Optik der Friedrich-Schiller-Universität Jena und des Leibniz-Instituts für Photonische Technologien Jena (Leibniz-IPHT) präsentieren im Fachblatt „Journal of Optics“ eine neue Möglichkeit, glasfaserbasierte und kabellose optische Datenübertragung effizient miteinander zu verbinden.

Dank des Internets können wir in Sekundenbruchteilen mit Menschen rund um den Globus in Kontakt treten. Damit die Kommunikation reibungslos funktioniert,...

Im Focus: Strathclyde-led research develops world's highest gain high-power laser amplifier

The world's highest gain high power laser amplifier - by many orders of magnitude - has been developed in research led at the University of Strathclyde.

The researchers demonstrated the feasibility of using plasma to amplify short laser pulses of picojoule-level energy up to 100 millijoules, which is a 'gain'...

Im Focus: Lässt sich mit Boten-RNA das Immunsystem gegen Staphylococcus aureus scharf schalten?

Staphylococcus aureus ist aufgrund häufiger Resistenzen gegenüber vielen Antibiotika ein gefürchteter Erreger (MRSA) insbesondere bei Krankenhaus-Infektionen. Forscher des Paul-Ehrlich-Instituts haben immunologische Prozesse identifiziert, die eine erfolgreiche körpereigene, gegen den Erreger gerichtete Abwehr verhindern. Die Forscher konnten zeigen, dass sich durch Übertragung von Protein oder Boten-RNA (mRNA, messenger RNA) des Erregers auf Immunzellen die Immunantwort in Richtung einer aktiven Erregerabwehr verschieben lässt. Dies könnte für die Entwicklung eines wirksamen Impfstoffs bedeutsam sein. Darüber berichtet PLOS Pathogens in seiner Online-Ausgabe vom 25.05.2017.

Staphylococcus aureus (S. aureus) ist ein Bakterium, das bei weit über der Hälfte der Erwachsenen Haut und Schleimhäute besiedelt und dabei normalerweise keine...

Im Focus: Can the immune system be boosted against Staphylococcus aureus by delivery of messenger RNA?

Staphylococcus aureus is a feared pathogen (MRSA, multi-resistant S. aureus) due to frequent resistances against many antibiotics, especially in hospital infections. Researchers at the Paul-Ehrlich-Institut have identified immunological processes that prevent a successful immune response directed against the pathogenic agent. The delivery of bacterial proteins with RNA adjuvant or messenger RNA (mRNA) into immune cells allows the re-direction of the immune response towards an active defense against S. aureus. This could be of significant importance for the development of an effective vaccine. PLOS Pathogens has published these research results online on 25 May 2017.

Staphylococcus aureus (S. aureus) is a bacterium that colonizes by far more than half of the skin and the mucosa of adults, usually without causing infections....

Im Focus: Orientierungslauf im Mikrokosmos

Physiker der Universität Würzburg können auf Knopfdruck einzelne Lichtteilchen erzeugen, die einander ähneln wie ein Ei dem anderen. Zwei neue Studien zeigen nun, welches Potenzial diese Methode hat.

Der Quantencomputer beflügelt seit Jahrzehnten die Phantasie der Wissenschaftler: Er beruht auf grundlegend anderen Phänomenen als ein herkömmlicher Rechner....

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Lebensdauer alternder Brücken - prüfen und vorausschauen

29.05.2017 | Veranstaltungen

49. eucen-Konferenz zum Thema Lebenslanges Lernen an Universitäten

29.05.2017 | Veranstaltungen

Internationale Konferenz an der Schnittstelle von Literatur, Kultur und Wirtschaft

29.05.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Neue Methode für die Datenübertragung mit Licht

29.05.2017 | Physik Astronomie

Deutschlandweit erstmalig: Selbstauflösender Bronchial-Stent für Säugling

29.05.2017 | Medizintechnik

Professionelle Mooszucht für den Klimaschutz – Projektstart in Greifswald

29.05.2017 | Ökologie Umwelt- Naturschutz