Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Poröse Halbleiter

28.04.2014

Augsburger Chemikern synthetisierten metallorganische Gerüstverbindungen mit vielfältigen Einsatzmöglichkeiten in der medizinischen Sensorik und in der Photovoltaik.

Chemiker am Institut für Physik der Universität Augsburg berichten im renommierten Fachjournal "Advanced Functional Materials" von neuartigen porösen Verbindungen, deren Halbleiter-Eigenschaften gezielt maßgeschneidert werden können.


(a) Modulartiger Aufbau einer metallorganischen Gerüstverbindung mit halbleitenden Eigenschaften. Gezielte Modifizierung von Bauelementen erlaubt eine exakte Kontrolle der Halbleiter

© Universität Augsburg/ifp

Halbleiter, die niedrige elektronische Bandlücken mit einem für Moleküle zugänglichen System aus nano-dimensionierten Kanälen kombinieren, ermöglichen die Entwicklung von neuartigen multifunktionalen Materialien für vielfältige technische Anwendungen.

Einem Augsburger Forscherteam aus Festkörper-Chemikern und Experimental-Physikern ist es gelungen, durch Anwendung einer Vielzahl spektroskopischer Messmethoden umfassend die elektronischen Eigenschaften einer metallorganischen Gerüstverbindung - MOF für "metal-organic framework" - über einen weiten Temperaturbereich hinweg zu bestimmen.

Die dazu verwendete Gerüstverbindung MFU-4 wurde von Wissenschaftlern um Prof. Dr. Dirk Volkmer am Lehrstuhl für Festkörperchemie der Universität Augsburg bereits vor einiger Zeit synthetisiert (siehe http://www.presse.uni-augsburg.de/unipressedienst/2012/okt-dez/2012_208/)

Metallorganische Gerüstverbindungen werden in einem Baukastensystem erzeugt, in dem sich poröse Materialien für spezielle Anwendungen gezielt herstellen lassen. Wie Volkmers Kollegen Prof. Dr. Alois Loidl und PD Dr. Peter Lunkenheimer vom Augsburger Lehrstuhl für Experimentalphysik V/EKM durch temperaturabhängige dielektrische Messungen nun zeigen konnten, lässt sich die elektronische Bandlücke des Materials MFU-4 – die entscheidende Größe für die elektrische Leitfähigkeit – durch gezielten Austausch von Metall-Ionen in weiten Bereichen anpassen.

So wird z. B. durch den Austausch von Zink- gegen Cobalt-Ionen die elektronische Bandlücke von ursprünglich 3.0 auf ca. 1.8 Elektronenvolt (eV) herabgesetzt. Die resultierende Verbindung - Co-MFU-4 - nähert sich damit in Bezug auf die elektronischen Eigenschaften bekannten Halbleiter-Verbindungen wie etwa Selen oder Cadmiumselenid an, weist aber im Gegensatz zu diesen kompakten anorganischen Halbleitern eine riesige innere Oberfläche von größer als 1000 m2/g auf, was vielfältige Anwendungsperspektiven eröffnet. Vergleichbare Oberflächen und Poren zeigen sonst nur sogenannte Zeolithe, deren intrinsische Bandlücken aber bei wesentlich höheren Energiewerten über 5 eV liegen und die sich deshalb wie Isolatoren verhalten.

Durch quantenmechanische Berechnungen von Dr. Juan Sastre - theoretischer Chemiker an der Polytechnischen Universität Valencia - konnten die elektronischen Eigenschaften für die ungewöhnliche Material-Kombination aus Poren und elektrischer Leitfähigkeit simuliert und genau vorhergesagt werden. Sastres Berechnungen erlauben tiefere Einblicke in Struktur-Eigenschaftsbeziehungen von metallorganischen Gerüstverbindungen und gezielte Vorhersagen über die Auswirkungen struktureller Modifikationen auf die elektronischen Eigenschaften.

"Dadurch wird es möglich, die Bandlücke von porösen Gerüstverbindungen gezielt einzustellen. Dies wiederum ermöglicht es, z. B. Energie aus Sonnenlicht mit höchster Effizienz zu sammeln und in chemische Energie und Materialien umzuwandeln, beispielsweise in der photokatalytischen Herstellung von Wasserstoff aus Wasser oder der Fixierung von Kohlendioxid", so Volkmer.

Da das poröse MOF-Material von den umzuwandelnden Stoffen vollständig infiltriert wird, ist die Effizienz solcher Umwandlungen vermutlich sehr viel höher als diejenige typischer, bisher verwendeter kompakter Photohalbleiter-Materialien.

Darüber hinaus ergeben sich potentielle Anwendungen im Bereich der Sensorik: Die zu analysierenden Moleküle dringen in die Gerüstverbindung ein und verursachen eine Veränderung der Gitterstruktur und -symmetrie. Die damit einhergehenden Änderungen der Elektronenstruktur können dann – dank halbleitender Eigenschaften – auf direktem elektrischen Wege detektiert werden.

Und mehr noch: metallorganische Gerüstverbindungen sind Nanoschwämme, die solche Moleküle, die exakt in die Poren passen, "aktiv" anreichern. Damit eröffnen sich Perspektiven für die medizinische Diagnostik, etwa bei der Erfassung von kleinsten Mengen flüchtiger Verbindungen in der Atemluft von Patienten, die für bestimmte Krankheitsbilder charakteristisch sind. Denkbar wären entsprechende Sensormodule, in die der Anwender wie bei den bekannten Alkoholtests hineinbläst. "Bis solche "Apps" für Smartphones oder PCs zur Verfügung gestellt werden können, bedarf es aber", wie Volkmer anmerkt, "noch weiterer grundlegender Untersuchungen, an denen wir an der Universität Augsburg derzeit tüfteln."
 
Originalbeitrag:

Pit Sippel, Dmytro Denysenko, Alois Loidl, Peter Lunkenheimer, German Sastre, and Dirk Volkmer: Dielectric Relaxation Processes, Electronic Structure and Band Gap Engineering of MFU-4-type Metal-Organic Frameworks: Towards a Rational Design of Semiconducting Microporous Materials. Advanced Functional Materials, Article first published online: 18 MAR 2014, DOI: 10.1002/adfm.201400083
 
Kontakt:

Prof. Dr. Dirk Volkmer
Lehrstuhl für Festkörperchemie
Universität Augsburg
86135 Augsburg
Telefon +49(0)821-598-3006
dirk.volkmer@physik.uni-augsburg.de
http://www.physik.uni-augsburg.de/chemie/

Klaus P. Prem | idw - Informationsdienst Wissenschaft

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Elektrisch leitende Hülle für Bakterien
29.06.2017 | Gesellschaft Deutscher Chemiker e.V.

nachricht Designte Proteine gegen Muskelschwund
29.06.2017 | Universität Basel

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Wellen schlagen

Computerwissenschaftler verwenden die Theorie von Wellenpaketen, um realistische und detaillierte Simulationen von Wasserwellen in Echtzeit zu erstellen. Ihre Ergebnisse werden auf der diesjährigen SIGGRAPH Konferenz vorgestellt.

Denkt man an einen See, einen Fluss oder an das Meer, so sieht man vor sich, wie sich das Wasser kräuselt, wie Wellen gegen die Felsen schlagen, wie Bugwellen...

Im Focus: Making Waves

Computer scientists use wave packet theory to develop realistic, detailed water wave simulations in real time. Their results will be presented at this year’s SIGGRAPH conference.

Think about the last time you were at a lake, river, or the ocean. Remember the ripples of the water, the waves crashing against the rocks, the wake following...

Im Focus: Schnelles und umweltschonendes Laserstrukturieren von Werkzeugen zur Folienherstellung

Kosteneffizienz und hohe Produktivität ohne dabei die Umwelt zu belasten: Im EU-Projekt »PoLaRoll« entwickelt das Fraunhofer-Institut für Produktionstechnologie IPT aus Aachen gemeinsam mit dem Oberhausener Fraunhofer-Institut für Umwelt-, Sicherheit- und Energietechnik UMSICHT und sechs Industriepartnern ein Modul zur direkten Laser-Mikrostrukturierung in einem Rolle-zu-Rolle-Verfahren. Ziel ist es, mit Hilfe dieses Systems eine siebartige Metallfolie als Demonstrator zu fertigen, die zum Sonnenschutz von Glasfassaden verwendet wird: Durch ihre besondere Geometrie wird die Sonneneinstrahlung reduziert, woraus sich ein verminderter Energieaufwand für Kühlung und Belüftung ergibt.

Das Fraunhofer IPT ist im Projekt »PoLaRoll« für die Prozessentwicklung der Laserstrukturierung sowie für die Mess- und Systemtechnik zuständig. Von den...

Im Focus: Das Auto lernt vorauszudenken

Ein neues Christian Doppler Labor an der TU Wien beschäftigt sich mit der Regelung und Überwachung von Antriebssystemen – mit Unterstützung des Wissenschaftsministeriums und von AVL List.

Wer ein Auto fährt, trifft ständig Entscheidungen: Man gibt Gas, bremst und dreht am Lenkrad. Doch zusätzlich muss auch das Fahrzeug selbst ununterbrochen...

Im Focus: Vorbild Delfinhaut: Elastisches Material vermindert Reibungswiderstand bei Schiffen

Für eine elegante und ökonomische Fortbewegung im Wasser geben Delfine den Wissenschaftlern ein exzellentes Vorbild. Die flinken Säuger erzielen erstaunliche Schwimmleistungen, deren Ursachen einerseits in der Körperform und andererseits in den elastischen Eigenschaften ihrer Haut zu finden sind. Letzteres Phänomen ist bereits seit Mitte des vorigen Jahrhunderts bekannt, konnte aber bislang nicht erfolgreich auf technische Anwendungen übertragen werden. Experten des Fraunhofer IFAM und der HSVA GmbH haben nun gemeinsam mit zwei weiteren Forschungspartnern eine Oberflächenbeschichtung entwickelt, die ähnlich wie die Delfinhaut den Strömungswiderstand im Wasser messbar verringert.

Delfine haben eine glatte Haut mit einer darunter liegenden dicken, nachgiebigen Speckschicht. Diese speziellen Hauteigenschaften führen zu einer signifikanten...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Marine Pilze – hervorragende Quellen für neue marine Wirkstoffe?

28.06.2017 | Veranstaltungen

Willkommen an Bord!

28.06.2017 | Veranstaltungen

Internationale Fachkonferenz IEEE ICDCM - Lokale Gleichstromnetze bereichern die Energieversorgung

27.06.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Designte Proteine gegen Muskelschwund

29.06.2017 | Biowissenschaften Chemie

Benzin und Chemikalien aus Pflanzenresten

29.06.2017 | Biowissenschaften Chemie

Hochleitfähige Folien ermöglichen großflächige OLED-Beleuchtung

29.06.2017 | Energie und Elektrotechnik