Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Poröse Halbleiter

28.04.2014

Augsburger Chemikern synthetisierten metallorganische Gerüstverbindungen mit vielfältigen Einsatzmöglichkeiten in der medizinischen Sensorik und in der Photovoltaik.

Chemiker am Institut für Physik der Universität Augsburg berichten im renommierten Fachjournal "Advanced Functional Materials" von neuartigen porösen Verbindungen, deren Halbleiter-Eigenschaften gezielt maßgeschneidert werden können.


(a) Modulartiger Aufbau einer metallorganischen Gerüstverbindung mit halbleitenden Eigenschaften. Gezielte Modifizierung von Bauelementen erlaubt eine exakte Kontrolle der Halbleiter

© Universität Augsburg/ifp

Halbleiter, die niedrige elektronische Bandlücken mit einem für Moleküle zugänglichen System aus nano-dimensionierten Kanälen kombinieren, ermöglichen die Entwicklung von neuartigen multifunktionalen Materialien für vielfältige technische Anwendungen.

Einem Augsburger Forscherteam aus Festkörper-Chemikern und Experimental-Physikern ist es gelungen, durch Anwendung einer Vielzahl spektroskopischer Messmethoden umfassend die elektronischen Eigenschaften einer metallorganischen Gerüstverbindung - MOF für "metal-organic framework" - über einen weiten Temperaturbereich hinweg zu bestimmen.

Die dazu verwendete Gerüstverbindung MFU-4 wurde von Wissenschaftlern um Prof. Dr. Dirk Volkmer am Lehrstuhl für Festkörperchemie der Universität Augsburg bereits vor einiger Zeit synthetisiert (siehe http://www.presse.uni-augsburg.de/unipressedienst/2012/okt-dez/2012_208/)

Metallorganische Gerüstverbindungen werden in einem Baukastensystem erzeugt, in dem sich poröse Materialien für spezielle Anwendungen gezielt herstellen lassen. Wie Volkmers Kollegen Prof. Dr. Alois Loidl und PD Dr. Peter Lunkenheimer vom Augsburger Lehrstuhl für Experimentalphysik V/EKM durch temperaturabhängige dielektrische Messungen nun zeigen konnten, lässt sich die elektronische Bandlücke des Materials MFU-4 – die entscheidende Größe für die elektrische Leitfähigkeit – durch gezielten Austausch von Metall-Ionen in weiten Bereichen anpassen.

So wird z. B. durch den Austausch von Zink- gegen Cobalt-Ionen die elektronische Bandlücke von ursprünglich 3.0 auf ca. 1.8 Elektronenvolt (eV) herabgesetzt. Die resultierende Verbindung - Co-MFU-4 - nähert sich damit in Bezug auf die elektronischen Eigenschaften bekannten Halbleiter-Verbindungen wie etwa Selen oder Cadmiumselenid an, weist aber im Gegensatz zu diesen kompakten anorganischen Halbleitern eine riesige innere Oberfläche von größer als 1000 m2/g auf, was vielfältige Anwendungsperspektiven eröffnet. Vergleichbare Oberflächen und Poren zeigen sonst nur sogenannte Zeolithe, deren intrinsische Bandlücken aber bei wesentlich höheren Energiewerten über 5 eV liegen und die sich deshalb wie Isolatoren verhalten.

Durch quantenmechanische Berechnungen von Dr. Juan Sastre - theoretischer Chemiker an der Polytechnischen Universität Valencia - konnten die elektronischen Eigenschaften für die ungewöhnliche Material-Kombination aus Poren und elektrischer Leitfähigkeit simuliert und genau vorhergesagt werden. Sastres Berechnungen erlauben tiefere Einblicke in Struktur-Eigenschaftsbeziehungen von metallorganischen Gerüstverbindungen und gezielte Vorhersagen über die Auswirkungen struktureller Modifikationen auf die elektronischen Eigenschaften.

"Dadurch wird es möglich, die Bandlücke von porösen Gerüstverbindungen gezielt einzustellen. Dies wiederum ermöglicht es, z. B. Energie aus Sonnenlicht mit höchster Effizienz zu sammeln und in chemische Energie und Materialien umzuwandeln, beispielsweise in der photokatalytischen Herstellung von Wasserstoff aus Wasser oder der Fixierung von Kohlendioxid", so Volkmer.

Da das poröse MOF-Material von den umzuwandelnden Stoffen vollständig infiltriert wird, ist die Effizienz solcher Umwandlungen vermutlich sehr viel höher als diejenige typischer, bisher verwendeter kompakter Photohalbleiter-Materialien.

Darüber hinaus ergeben sich potentielle Anwendungen im Bereich der Sensorik: Die zu analysierenden Moleküle dringen in die Gerüstverbindung ein und verursachen eine Veränderung der Gitterstruktur und -symmetrie. Die damit einhergehenden Änderungen der Elektronenstruktur können dann – dank halbleitender Eigenschaften – auf direktem elektrischen Wege detektiert werden.

Und mehr noch: metallorganische Gerüstverbindungen sind Nanoschwämme, die solche Moleküle, die exakt in die Poren passen, "aktiv" anreichern. Damit eröffnen sich Perspektiven für die medizinische Diagnostik, etwa bei der Erfassung von kleinsten Mengen flüchtiger Verbindungen in der Atemluft von Patienten, die für bestimmte Krankheitsbilder charakteristisch sind. Denkbar wären entsprechende Sensormodule, in die der Anwender wie bei den bekannten Alkoholtests hineinbläst. "Bis solche "Apps" für Smartphones oder PCs zur Verfügung gestellt werden können, bedarf es aber", wie Volkmer anmerkt, "noch weiterer grundlegender Untersuchungen, an denen wir an der Universität Augsburg derzeit tüfteln."
 
Originalbeitrag:

Pit Sippel, Dmytro Denysenko, Alois Loidl, Peter Lunkenheimer, German Sastre, and Dirk Volkmer: Dielectric Relaxation Processes, Electronic Structure and Band Gap Engineering of MFU-4-type Metal-Organic Frameworks: Towards a Rational Design of Semiconducting Microporous Materials. Advanced Functional Materials, Article first published online: 18 MAR 2014, DOI: 10.1002/adfm.201400083
 
Kontakt:

Prof. Dr. Dirk Volkmer
Lehrstuhl für Festkörperchemie
Universität Augsburg
86135 Augsburg
Telefon +49(0)821-598-3006
dirk.volkmer@physik.uni-augsburg.de
http://www.physik.uni-augsburg.de/chemie/

Klaus P. Prem | idw - Informationsdienst Wissenschaft

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Symbiose-Bakterien: Vom blinden Passagier zum Leibwächter des Wollkäfers
28.04.2017 | Johannes Gutenberg-Universität Mainz

nachricht Forschungsteam entdeckt Mechanismus zur Aktivierung der Reproduktion bei Pflanzen
28.04.2017 | Universität Hamburg

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: TU Chemnitz präsentiert weltweit einzigartige Pilotanlage für nachhaltigen Leichtbau

Wickelprinzip umgekehrt: Orbitalwickeltechnologie soll neue Maßstäbe in der großserientauglichen Fertigung komplexer Strukturbauteile setzen

Mitarbeiterinnen und Mitarbeiter des Bundesexzellenzclusters „Technologiefusion für multifunktionale Leichtbaustrukturen" (MERGE) und des Instituts für...

Im Focus: Smart Wireless Solutions: EU-Großprojekt „DEWI“ liefert Innovationen für eine drahtlose Zukunft

58 europäische Industrie- und Forschungspartner aus 11 Ländern forschten unter der Leitung des VIRTUAL VEHICLE drei Jahre lang, um Europas führende Position im Bereich Embedded Systems und dem Internet of Things zu stärken. Die Ergebnisse von DEWI (Dependable Embedded Wireless Infrastructure) wurden heute in Graz präsentiert. Zu sehen war eine Fülle verschiedenster Anwendungen drahtloser Sensornetzwerke und drahtloser Kommunikation – von einer Forschungsrakete über Demonstratoren zur Gebäude-, Fahrzeug- oder Eisenbahntechnik bis hin zu einem voll vernetzten LKW.

Was vor wenigen Jahren noch nach Science-Fiction geklungen hätte, ist in seinem Ansatz bereits Wirklichkeit und wird in Zukunft selbstverständlicher Teil...

Im Focus: Weltweit einzigartiger Windkanal im Leipziger Wolkenlabor hat Betrieb aufgenommen

Am Leibniz-Institut für Troposphärenforschung (TROPOS) ist am Dienstag eine weltweit einzigartige Anlage in Betrieb genommen worden, mit der die Einflüsse von Turbulenzen auf Wolkenprozesse unter präzise einstellbaren Versuchsbedingungen untersucht werden können. Der neue Windkanal ist Teil des Leipziger Wolkenlabors, in dem seit 2006 verschiedenste Wolkenprozesse simuliert werden. Unter Laborbedingungen wurden z.B. das Entstehen und Gefrieren von Wolken nachgestellt. Wie stark Luftverwirbelungen diese Prozesse beeinflussen, konnte bisher noch nicht untersucht werden. Deshalb entstand in den letzten Jahren eine ergänzende Anlage für rund eine Million Euro.

Die von dieser Anlage zu erwarteten neuen Erkenntnisse sind wichtig für das Verständnis von Wetter und Klima, wie etwa die Bildung von Niederschlag und die...

Im Focus: Nanoskopie auf dem Chip: Mikroskopie in HD-Qualität

Neue Erfindung der Universitäten Bielefeld und Tromsø (Norwegen)

Physiker der Universität Bielefeld und der norwegischen Universität Tromsø haben einen Chip entwickelt, der super-auflösende Lichtmikroskopie, auch...

Im Focus: Löschbare Tinte für den 3-D-Druck

Im 3-D-Druckverfahren durch Direktes Laserschreiben können Mikrometer-große Strukturen mit genau definierten Eigenschaften geschrieben werden. Forscher des Karlsruher Institus für Technologie (KIT) haben ein Verfahren entwickelt, durch das sich die 3-D-Tinte für die Drucker wieder ‚wegwischen‘ lässt. Die bis zu hundert Nanometer kleinen Strukturen lassen sich dadurch wiederholt auflösen und neu schreiben - ein Nanometer entspricht einem millionstel Millimeter. Die Entwicklung eröffnet der 3-D-Fertigungstechnik vielfältige neue Anwendungen, zum Beispiel in der Biologie oder Materialentwicklung.

Beim Direkten Laserschreiben erzeugt ein computergesteuerter, fokussierter Laserstrahl in einem Fotolack wie ein Stift die Struktur. „Eine Tinte zu entwickeln,...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Internationaler Tag der Immunologie - 29. April 2017

28.04.2017 | Veranstaltungen

Kampf gegen multiresistente Tuberkulose – InfectoGnostics trifft MYCO-NET²-Partner in Peru

28.04.2017 | Veranstaltungen

123. Internistenkongress: Traumata, Sprachbarrieren, Infektionen und Bürokratie – Herausforderungen

27.04.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Über zwei Millionen für bessere Bordnetze

28.04.2017 | Förderungen Preise

Symbiose-Bakterien: Vom blinden Passagier zum Leibwächter des Wollkäfers

28.04.2017 | Biowissenschaften Chemie

Wie Pflanzen ihre Zucker leitenden Gewebe bilden

28.04.2017 | Biowissenschaften Chemie