Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Poren-tiefe Entdeckung

09.03.2009
Sie sehen aus wie kleine Fässer und es gibt sie tausendfach in fast jeder Zelle: Vault-Partikel. Obwohl sie schon vor rund dreißig Jahren beschrieben wurden, war ihre Funktion bislang unbekannt.

Einem Forschungsteam der Universität Würzburg ist es jetzt gelungen, das Rätsel um die Vaults zu lösen.


Ein \"synthetischer\" Zellkern (blau), angefärbt mit Antikörpern gegen Vaults (grün) und Kernporen (rot). Fotos: Christian Hacker

Ihre Form ist eindeutig: Wie ein Mini-Sarkophag, eine Nanokapsel oder eben wie das Tonnengewölbe mittelalterlicher Kathedralen sehen sie aus - die Eiweißkomplexe, die in Zellen in großer Zahl zu finden sind. Vault-Partikel oder kurz Vaults nennt man sie deshalb in der einschlägigen Literatur, abgeleitet von dem englischen "Vault" für "Gewölbe".

Ihre Funktion war bislang unklar. Erst jetzt ist es der Würzburger Professorin Marie-Christine Dabauvalle von der Abteilung für Elektronenmikroskopie am Biozentrum gelungen, mit Unterstützung von Forschern des Rudolf-Virchow-Zentrums aufzudecken, welche Aufgaben Vaults in den Zellen übernehmen. Wie die Wissenschaftlerinnen und Wissenschaftler zeigen konnten, spielen Vaults eine wichtige Rolle, wenn sich Zellen teilen und Tochterzellen ihre neue Gestalt annehmen.

Kommunikation über die Kernporen

Zellkerne sind von einer doppelten Membran umgeben, der Kernhülle. In ihrem Inneren liegt das Erbgut - die DNA; außen, im so genannten Zytoplasma, befinden sich alle anderen für den Stoffwechsel der Zelle wichtigen Substanzen. Um den Stoff- und Informationsaustausch zwischen dem Kern als dem genetischen Steuerzentrum und dem Zytoplasma zu gewährleisten, ist die Kernhülle von zahlreichen Kanälen, den Kernporenkomplexen, durchbohrt. Bei einer menschlichen Zelle finden sich rund 3000 von ihnen.

Nach jeder Zellteilung müssen die Tochterzellen wachsen und alle Zellbestandteile verdoppeln, bevor sie sich selbst wieder teilen können. So wächst auch der Zellkern, und die Zahl der Kernporen verdoppelt sich. Wie diese Poren in die bestehende Doppelmembran der Kernhülle eingefügt werden, ist ein kaum verstandener Prozess. "Zunächst müssen die beiden Kernmembranen punktartig miteinander fusionieren, um einen Membrankanal zu bilden", erklärt Marie-Christine Dabauvalle.

"Gleichzeitig wird der Membrankanal durch die Anlagerung von hunderten spezifischer Proteinen, den so genannten Nukleoporinen, stabilisiert, und es bilden sich zylindrische Porenkomplexe, die zum Grundinventar jeder Zelle gehören, die einen Zellkern besitzt", so die Wissenschaftlerin. Diese Porenkomplexe zeigen stets die gleiche biochemische Zusammensetzung und den gleichen strukturellen Aufbau, unabhängig davon, ob man einzellige Organismen, pflanzliche, tierische oder menschliche Zellen untersucht.

Neubildung von Kernporen im Reagenzglas

Wie aber bildet sich solch ein neuer Kernporenkomplex? Um diese Frage experimentell anzugehen, hat die Gruppe um Marie-Christine Dabauvalle ein zellfreies System eingesetzt, das auf dem Extrakt von Eiern des südafrikanischen Krallenfroschs Xenopus laevis basiert. Gab sie diesem Extrakt DNA-Material hinzu, bildete sich spontan eine Kernhülle mitsamt Kernporenkomplexen; es entstanden "synthetische" Zellkerne.

Mit Hilfe eines Tricks gelang es der Arbeitsgruppe anschließend, Kerne herzustellen, die von einer Doppelmembran umgeben waren, aber keine Porenkomplexe enthielten. Erst nach der Zugabe einer ganz bestimmten Membranfraktion bildeten sich Poren in der Membran.

Das Rätsel der Poren induzierenden Membranfraktion

Was bewirkte die Neubildung der Kernporen? In Zusammenarbeit mit der Gruppe um Albert Sickmann vom Virchow-Zentrum konnte Marie-Christine Dabauvalle und ihr Team den porenbildenden Faktor identifizieren. Es handelt sich überraschenderweise um das Protein, das die Vaults aufbaut, genannt Major Vault Protein (MVP). Wie genau Vaults die Kernporenbildung auslösen, ist noch nicht geklärt.

Die Größe und die biochemischen Eigenschaften der Vault-Nanokapseln lassen jedoch vermuten, dass sie mit dafür verantwortlich sind, wenn die beiden Kernmembranen punktuell miteinander verschmelzen. Zusätzlich könnten sie die neu gebildeten Membrankanäle stabilisieren und dadurch ein chaotisches Aufreißen verhindern, bis sich die stabile Architektur der Kernporenkomplexe ausgebildet hat.

Schwerpunkt der weiteren Forschungen wird es nun sein, die Interaktionen von Vaults mit der Kernmembran und den verschiedenen Nukleoporinen auf molekularer Ebene aufzuklären. Über das Forschungsergebnis berichtet die aktuelle Ausgabe des Journal of Cell Science.

Friederike Vollmar, Christian Hacker, René-Peiman Zahedi, Albert Sickmann, Andrea Ewald, Ulrich Scheer, und Marie-Christine Dabauvalle (2009). Assembly of nuclear pore complexes mediated by major vault protein (MVP). J. Cell Science 122: 780-786. Siehe auch das Editorial im gleichen Heft "In this Issue".

Kontakt: Prof. Dr. Marie-Christine Dabauvalle, Tel. (0931) 31-88055, E-Mail: dabauvalle@biozentrum.uni-wuerzburg.de

Gunnar Bartsch | idw
Weitere Informationen:
http://www.uni-wuerzburg.de

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Bakterieller Untermieter macht Blattnahrung für Käfer verdaulich
17.11.2017 | Max-Planck-Institut für chemische Ökologie

nachricht Neues Werkzeug für gezielten Proteinabbau
17.11.2017 | Max-Planck-Institut für biophysikalische Chemie

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Ultrakalte chemische Prozesse: Physikern gelingt beispiellose Vermessung auf Quantenniveau

Wissenschaftler um den Ulmer Physikprofessor Johannes Hecker Denschlag haben chemische Prozesse mit einer beispiellosen Auflösung auf Quantenniveau vermessen. Bei ihrer wissenschaftlichen Arbeit kombinierten die Forscher Theorie und Experiment und können so erstmals die Produktzustandsverteilung über alle Quantenzustände hinweg - unmittelbar nach der Molekülbildung - nachvollziehen. Die Forscher haben ihre Erkenntnisse in der renommierten Fachzeitschrift "Science" publiziert. Durch die Ergebnisse wird ein tieferes Verständnis zunehmend komplexer chemischer Reaktionen möglich, das zukünftig genutzt werden kann, um Reaktionsprozesse auf Quantenniveau zu steuern.

Einer deutsch-amerikanischen Forschergruppe ist es gelungen, chemische Prozesse mit einer nie dagewesenen Auflösung auf Quantenniveau zu vermessen. Dadurch...

Im Focus: Leoniden 2017: Sternschnuppen im Anflug?

Gemeinsame Pressemitteilung der Vereinigung der Sternfreunde und des Hauses der Astronomie in Heidelberg

Die Sternschnuppen der Leoniden sind in diesem Jahr gut zu beobachten, da kein Mondlicht stört. Experten sagen für die Nächte vom 16. auf den 17. und vom 17....

Im Focus: «Kosmische Schlange» lässt die Struktur von fernen Galaxien erkennen

Die Entstehung von Sternen in fernen Galaxien ist noch weitgehend unerforscht. Astronomen der Universität Genf konnten nun erstmals ein sechs Milliarden Lichtjahre entferntes Sternensystem genauer beobachten – und damit frühere Simulationen der Universität Zürich stützen. Ein spezieller Effekt ermöglicht mehrfach reflektierte Bilder, die sich wie eine Schlange durch den Kosmos ziehen.

Heute wissen Astronomen ziemlich genau, wie sich Sterne in der jüngsten kosmischen Vergangenheit gebildet haben. Aber gelten diese Gesetzmässigkeiten auch für...

Im Focus: A “cosmic snake” reveals the structure of remote galaxies

The formation of stars in distant galaxies is still largely unexplored. For the first time, astron-omers at the University of Geneva have now been able to closely observe a star system six billion light-years away. In doing so, they are confirming earlier simulations made by the University of Zurich. One special effect is made possible by the multiple reflections of images that run through the cosmos like a snake.

Today, astronomers have a pretty accurate idea of how stars were formed in the recent cosmic past. But do these laws also apply to older galaxies? For around a...

Im Focus: Pflanzenvielfalt von Wäldern aus der Luft abbilden

Produktivität und Stabilität von Waldökosystemen hängen stark von der funktionalen Vielfalt der Pflanzengemeinschaften ab. UZH-Forschenden gelang es, die Pflanzenvielfalt von Wäldern durch Fernerkundung mit Flugzeugen in verschiedenen Massstäben zu messen und zu kartieren – von einzelnen Bäumen bis hin zu ganzen Artengemeinschaften. Die neue Methode ebnet den Weg, um zukünftig die globale Pflanzendiversität aus der Luft und aus dem All zu überwachen.

Ökologische Studien zeigen, dass die Pflanzenvielfalt zentral ist für das Funktionieren von Ökosys-temen. Wälder mit einer höheren funktionalen Vielfalt –...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Technologievorsprung durch Textiltechnik

17.11.2017 | Veranstaltungen

Roboter für ein gesundes Altern: „European Robotics Week 2017“ an der Frankfurt UAS

17.11.2017 | Veranstaltungen

Börse für Zukunftstechnologien – Leichtbautag Stade bringt Unternehmen branchenübergreifend zusammen

17.11.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Technologievorsprung durch Textiltechnik

17.11.2017 | Veranstaltungsnachrichten

IHP präsentiert sich auf der productronica 2017

17.11.2017 | Messenachrichten

Roboter schafft den Salto rückwärts

17.11.2017 | Innovative Produkte