Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Poren-tiefe Entdeckung

09.03.2009
Sie sehen aus wie kleine Fässer und es gibt sie tausendfach in fast jeder Zelle: Vault-Partikel. Obwohl sie schon vor rund dreißig Jahren beschrieben wurden, war ihre Funktion bislang unbekannt.

Einem Forschungsteam der Universität Würzburg ist es jetzt gelungen, das Rätsel um die Vaults zu lösen.


Ein \"synthetischer\" Zellkern (blau), angefärbt mit Antikörpern gegen Vaults (grün) und Kernporen (rot). Fotos: Christian Hacker

Ihre Form ist eindeutig: Wie ein Mini-Sarkophag, eine Nanokapsel oder eben wie das Tonnengewölbe mittelalterlicher Kathedralen sehen sie aus - die Eiweißkomplexe, die in Zellen in großer Zahl zu finden sind. Vault-Partikel oder kurz Vaults nennt man sie deshalb in der einschlägigen Literatur, abgeleitet von dem englischen "Vault" für "Gewölbe".

Ihre Funktion war bislang unklar. Erst jetzt ist es der Würzburger Professorin Marie-Christine Dabauvalle von der Abteilung für Elektronenmikroskopie am Biozentrum gelungen, mit Unterstützung von Forschern des Rudolf-Virchow-Zentrums aufzudecken, welche Aufgaben Vaults in den Zellen übernehmen. Wie die Wissenschaftlerinnen und Wissenschaftler zeigen konnten, spielen Vaults eine wichtige Rolle, wenn sich Zellen teilen und Tochterzellen ihre neue Gestalt annehmen.

Kommunikation über die Kernporen

Zellkerne sind von einer doppelten Membran umgeben, der Kernhülle. In ihrem Inneren liegt das Erbgut - die DNA; außen, im so genannten Zytoplasma, befinden sich alle anderen für den Stoffwechsel der Zelle wichtigen Substanzen. Um den Stoff- und Informationsaustausch zwischen dem Kern als dem genetischen Steuerzentrum und dem Zytoplasma zu gewährleisten, ist die Kernhülle von zahlreichen Kanälen, den Kernporenkomplexen, durchbohrt. Bei einer menschlichen Zelle finden sich rund 3000 von ihnen.

Nach jeder Zellteilung müssen die Tochterzellen wachsen und alle Zellbestandteile verdoppeln, bevor sie sich selbst wieder teilen können. So wächst auch der Zellkern, und die Zahl der Kernporen verdoppelt sich. Wie diese Poren in die bestehende Doppelmembran der Kernhülle eingefügt werden, ist ein kaum verstandener Prozess. "Zunächst müssen die beiden Kernmembranen punktartig miteinander fusionieren, um einen Membrankanal zu bilden", erklärt Marie-Christine Dabauvalle.

"Gleichzeitig wird der Membrankanal durch die Anlagerung von hunderten spezifischer Proteinen, den so genannten Nukleoporinen, stabilisiert, und es bilden sich zylindrische Porenkomplexe, die zum Grundinventar jeder Zelle gehören, die einen Zellkern besitzt", so die Wissenschaftlerin. Diese Porenkomplexe zeigen stets die gleiche biochemische Zusammensetzung und den gleichen strukturellen Aufbau, unabhängig davon, ob man einzellige Organismen, pflanzliche, tierische oder menschliche Zellen untersucht.

Neubildung von Kernporen im Reagenzglas

Wie aber bildet sich solch ein neuer Kernporenkomplex? Um diese Frage experimentell anzugehen, hat die Gruppe um Marie-Christine Dabauvalle ein zellfreies System eingesetzt, das auf dem Extrakt von Eiern des südafrikanischen Krallenfroschs Xenopus laevis basiert. Gab sie diesem Extrakt DNA-Material hinzu, bildete sich spontan eine Kernhülle mitsamt Kernporenkomplexen; es entstanden "synthetische" Zellkerne.

Mit Hilfe eines Tricks gelang es der Arbeitsgruppe anschließend, Kerne herzustellen, die von einer Doppelmembran umgeben waren, aber keine Porenkomplexe enthielten. Erst nach der Zugabe einer ganz bestimmten Membranfraktion bildeten sich Poren in der Membran.

Das Rätsel der Poren induzierenden Membranfraktion

Was bewirkte die Neubildung der Kernporen? In Zusammenarbeit mit der Gruppe um Albert Sickmann vom Virchow-Zentrum konnte Marie-Christine Dabauvalle und ihr Team den porenbildenden Faktor identifizieren. Es handelt sich überraschenderweise um das Protein, das die Vaults aufbaut, genannt Major Vault Protein (MVP). Wie genau Vaults die Kernporenbildung auslösen, ist noch nicht geklärt.

Die Größe und die biochemischen Eigenschaften der Vault-Nanokapseln lassen jedoch vermuten, dass sie mit dafür verantwortlich sind, wenn die beiden Kernmembranen punktuell miteinander verschmelzen. Zusätzlich könnten sie die neu gebildeten Membrankanäle stabilisieren und dadurch ein chaotisches Aufreißen verhindern, bis sich die stabile Architektur der Kernporenkomplexe ausgebildet hat.

Schwerpunkt der weiteren Forschungen wird es nun sein, die Interaktionen von Vaults mit der Kernmembran und den verschiedenen Nukleoporinen auf molekularer Ebene aufzuklären. Über das Forschungsergebnis berichtet die aktuelle Ausgabe des Journal of Cell Science.

Friederike Vollmar, Christian Hacker, René-Peiman Zahedi, Albert Sickmann, Andrea Ewald, Ulrich Scheer, und Marie-Christine Dabauvalle (2009). Assembly of nuclear pore complexes mediated by major vault protein (MVP). J. Cell Science 122: 780-786. Siehe auch das Editorial im gleichen Heft "In this Issue".

Kontakt: Prof. Dr. Marie-Christine Dabauvalle, Tel. (0931) 31-88055, E-Mail: dabauvalle@biozentrum.uni-wuerzburg.de

Gunnar Bartsch | idw
Weitere Informationen:
http://www.uni-wuerzburg.de

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht 'Fix Me Another Marguerite!'
23.06.2017 | Universität Regensburg

nachricht Schimpansen belohnen Gefälligkeiten
23.06.2017 | Max-Planck-Institut für Mathematik in den Naturwissenschaften (MPIMIS)

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can we see monkeys from space? Emerging technologies to map biodiversity

An international team of scientists has proposed a new multi-disciplinary approach in which an array of new technologies will allow us to map biodiversity and the risks that wildlife is facing at the scale of whole landscapes. The findings are published in Nature Ecology and Evolution. This international research is led by the Kunming Institute of Zoology from China, University of East Anglia, University of Leicester and the Leibniz Institute for Zoo and Wildlife Research.

Using a combination of satellite and ground data, the team proposes that it is now possible to map biodiversity with an accuracy that has not been previously...

Im Focus: Klima-Satellit: Mit robuster Lasertechnik Methan auf der Spur

Hitzewellen in der Arktis, längere Vegetationsperioden in Europa, schwere Überschwemmungen in Westafrika – mit Hilfe des deutsch-französischen Satelliten MERLIN wollen Wissenschaftler ab 2021 die Emissionen des Treibhausgases Methan auf der Erde erforschen. Möglich macht das ein neues robustes Lasersystem des Fraunhofer-Instituts für Lasertechnologie ILT in Aachen, das eine bisher unerreichte Messgenauigkeit erzielt.

Methan entsteht unter anderem bei Fäulnisprozessen. Es ist 25-mal wirksamer als das klimaschädliche Kohlendioxid, kommt in der Erdatmosphäre aber lange nicht...

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: Die Schweiz in Pole-Position in der neuen ESA-Mission

Die Europäische Weltraumagentur ESA gab heute grünes Licht für die industrielle Produktion von PLATO, der grössten europäischen wissenschaftlichen Mission zu Exoplaneten. Partner dieser Mission sind die Universitäten Bern und Genf.

Die Europäische Weltraumagentur ESA lanciert heute PLATO (PLAnetary Transits and Oscillation of stars), die grösste europäische wissenschaftliche Mission zur...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Von Batterieforschung bis Optoelektronik

23.06.2017 | Veranstaltungen

10. HDT-Tagung: Elektrische Antriebstechnologie für Hybrid- und Elektrofahrzeuge

22.06.2017 | Veranstaltungen

„Fit für die Industrie 4.0“ – Tagung von Hochschule Darmstadt und Schader-Stiftung am 27. Juni

22.06.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Radioaktive Elemente in Cassiopeia A liefern Hinweise auf Neutrinos als Ursache der Supernova-Explosion

23.06.2017 | Physik Astronomie

Dünenökosysteme modellieren

23.06.2017 | Ökologie Umwelt- Naturschutz

Makro-Mikrowelle macht Leichtbau für Luft- und Raumfahrt effizienter

23.06.2017 | Materialwissenschaften