Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Poren-tiefe Entdeckung

09.03.2009
Sie sehen aus wie kleine Fässer und es gibt sie tausendfach in fast jeder Zelle: Vault-Partikel. Obwohl sie schon vor rund dreißig Jahren beschrieben wurden, war ihre Funktion bislang unbekannt.

Einem Forschungsteam der Universität Würzburg ist es jetzt gelungen, das Rätsel um die Vaults zu lösen.


Ein \"synthetischer\" Zellkern (blau), angefärbt mit Antikörpern gegen Vaults (grün) und Kernporen (rot). Fotos: Christian Hacker

Ihre Form ist eindeutig: Wie ein Mini-Sarkophag, eine Nanokapsel oder eben wie das Tonnengewölbe mittelalterlicher Kathedralen sehen sie aus - die Eiweißkomplexe, die in Zellen in großer Zahl zu finden sind. Vault-Partikel oder kurz Vaults nennt man sie deshalb in der einschlägigen Literatur, abgeleitet von dem englischen "Vault" für "Gewölbe".

Ihre Funktion war bislang unklar. Erst jetzt ist es der Würzburger Professorin Marie-Christine Dabauvalle von der Abteilung für Elektronenmikroskopie am Biozentrum gelungen, mit Unterstützung von Forschern des Rudolf-Virchow-Zentrums aufzudecken, welche Aufgaben Vaults in den Zellen übernehmen. Wie die Wissenschaftlerinnen und Wissenschaftler zeigen konnten, spielen Vaults eine wichtige Rolle, wenn sich Zellen teilen und Tochterzellen ihre neue Gestalt annehmen.

Kommunikation über die Kernporen

Zellkerne sind von einer doppelten Membran umgeben, der Kernhülle. In ihrem Inneren liegt das Erbgut - die DNA; außen, im so genannten Zytoplasma, befinden sich alle anderen für den Stoffwechsel der Zelle wichtigen Substanzen. Um den Stoff- und Informationsaustausch zwischen dem Kern als dem genetischen Steuerzentrum und dem Zytoplasma zu gewährleisten, ist die Kernhülle von zahlreichen Kanälen, den Kernporenkomplexen, durchbohrt. Bei einer menschlichen Zelle finden sich rund 3000 von ihnen.

Nach jeder Zellteilung müssen die Tochterzellen wachsen und alle Zellbestandteile verdoppeln, bevor sie sich selbst wieder teilen können. So wächst auch der Zellkern, und die Zahl der Kernporen verdoppelt sich. Wie diese Poren in die bestehende Doppelmembran der Kernhülle eingefügt werden, ist ein kaum verstandener Prozess. "Zunächst müssen die beiden Kernmembranen punktartig miteinander fusionieren, um einen Membrankanal zu bilden", erklärt Marie-Christine Dabauvalle.

"Gleichzeitig wird der Membrankanal durch die Anlagerung von hunderten spezifischer Proteinen, den so genannten Nukleoporinen, stabilisiert, und es bilden sich zylindrische Porenkomplexe, die zum Grundinventar jeder Zelle gehören, die einen Zellkern besitzt", so die Wissenschaftlerin. Diese Porenkomplexe zeigen stets die gleiche biochemische Zusammensetzung und den gleichen strukturellen Aufbau, unabhängig davon, ob man einzellige Organismen, pflanzliche, tierische oder menschliche Zellen untersucht.

Neubildung von Kernporen im Reagenzglas

Wie aber bildet sich solch ein neuer Kernporenkomplex? Um diese Frage experimentell anzugehen, hat die Gruppe um Marie-Christine Dabauvalle ein zellfreies System eingesetzt, das auf dem Extrakt von Eiern des südafrikanischen Krallenfroschs Xenopus laevis basiert. Gab sie diesem Extrakt DNA-Material hinzu, bildete sich spontan eine Kernhülle mitsamt Kernporenkomplexen; es entstanden "synthetische" Zellkerne.

Mit Hilfe eines Tricks gelang es der Arbeitsgruppe anschließend, Kerne herzustellen, die von einer Doppelmembran umgeben waren, aber keine Porenkomplexe enthielten. Erst nach der Zugabe einer ganz bestimmten Membranfraktion bildeten sich Poren in der Membran.

Das Rätsel der Poren induzierenden Membranfraktion

Was bewirkte die Neubildung der Kernporen? In Zusammenarbeit mit der Gruppe um Albert Sickmann vom Virchow-Zentrum konnte Marie-Christine Dabauvalle und ihr Team den porenbildenden Faktor identifizieren. Es handelt sich überraschenderweise um das Protein, das die Vaults aufbaut, genannt Major Vault Protein (MVP). Wie genau Vaults die Kernporenbildung auslösen, ist noch nicht geklärt.

Die Größe und die biochemischen Eigenschaften der Vault-Nanokapseln lassen jedoch vermuten, dass sie mit dafür verantwortlich sind, wenn die beiden Kernmembranen punktuell miteinander verschmelzen. Zusätzlich könnten sie die neu gebildeten Membrankanäle stabilisieren und dadurch ein chaotisches Aufreißen verhindern, bis sich die stabile Architektur der Kernporenkomplexe ausgebildet hat.

Schwerpunkt der weiteren Forschungen wird es nun sein, die Interaktionen von Vaults mit der Kernmembran und den verschiedenen Nukleoporinen auf molekularer Ebene aufzuklären. Über das Forschungsergebnis berichtet die aktuelle Ausgabe des Journal of Cell Science.

Friederike Vollmar, Christian Hacker, René-Peiman Zahedi, Albert Sickmann, Andrea Ewald, Ulrich Scheer, und Marie-Christine Dabauvalle (2009). Assembly of nuclear pore complexes mediated by major vault protein (MVP). J. Cell Science 122: 780-786. Siehe auch das Editorial im gleichen Heft "In this Issue".

Kontakt: Prof. Dr. Marie-Christine Dabauvalle, Tel. (0931) 31-88055, E-Mail: dabauvalle@biozentrum.uni-wuerzburg.de

Gunnar Bartsch | idw
Weitere Informationen:
http://www.uni-wuerzburg.de

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Forscher beschreiben neuartigen Antikörper als möglichen Wirkstoff gegen Alzheimer
22.08.2017 | Martin-Luther-Universität Halle-Wittenberg

nachricht Virus mit Eierschale
22.08.2017 | Gesellschaft Deutscher Chemiker e.V.

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Wissenschaftler entdecken seltene Ordnung von Elektronen in einem supraleitenden Kristall

In einem Artikel der aktuellen Ausgabe des Forschungsmagazins „Nature“ berichten Wissenschaftler vom Max-Planck-Institut für Chemische Physik fester Stoffe in Dresden von der Entdeckung eines seltenen Materiezustandes, bei dem sich die Elektronen in einem Kristall gemeinsam in einer Richtung bewegen. Diese Entdeckung berührt eine der offenen Fragestellungen im Bereich der Festkörperphysik: Was passiert, wenn sich Elektronen gemeinsam im Kollektiv verhalten, in sogenannten „stark korrelierten Elektronensystemen“, und wie „einigen sich“ die Elektronen auf ein gemeinsames Verhalten?

In den meisten Metallen beeinflussen sich Elektronen gegenseitig nur wenig und leiten Wärme und elektrischen Strom weitgehend unabhängig voneinander durch das...

Im Focus: Wie ein Bakterium von Methanol leben kann

Bei einem Bakterium, das Methanol als Nährstoff nutzen kann, identifizierten ETH-Forscher alle dafür benötigten Gene. Die Erkenntnis hilft, diesen Rohstoff für die Biotechnologie besser nutzbar zu machen.

Viele Chemiker erforschen derzeit, wie man aus den kleinen Kohlenstoffverbindungen Methan und Methanol grössere Moleküle herstellt. Denn Methan kommt auf der...

Im Focus: Topologische Quantenzustände einfach aufspüren

Durch gezieltes Aufheizen von Quantenmaterie können exotische Materiezustände aufgespürt werden. Zu diesem überraschenden Ergebnis kommen Theoretische Physiker um Nathan Goldman (Brüssel) und Peter Zoller (Innsbruck) in einer aktuellen Arbeit im Fachmagazin Science Advances. Sie liefern damit ein universell einsetzbares Werkzeug für die Suche nach topologischen Quantenzuständen.

In der Physik existieren gewisse Größen nur als ganzzahlige Vielfache elementarer und unteilbarer Bestandteile. Wie das antike Konzept des Atoms bezeugt, ist...

Im Focus: Unterwasserroboter soll nach einem Jahr in der arktischen Tiefsee auftauchen

Am Dienstag, den 22. August wird das Forschungsschiff Polarstern im norwegischen Tromsø zu einer besonderen Expedition in die Arktis starten: Der autonome Unterwasserroboter TRAMPER soll nach einem Jahr Einsatzzeit am arktischen Tiefseeboden auftauchen. Dieses Gerät und weitere robotische Systeme, die Tiefsee- und Weltraumforscher im Rahmen der Helmholtz-Allianz ROBEX gemeinsam entwickelt haben, werden nun knapp drei Wochen lang unter Realbedingungen getestet. ROBEX hat das Ziel, neue Technologien für die Erkundung schwer erreichbarer Gebiete mit extremen Umweltbedingungen zu entwickeln.

„Auftauchen wird der TRAMPER“, sagt Dr. Frank Wenzhöfer vom Alfred-Wegener-Institut, Helmholtz-Zentrum für Polar- und Meeresforschung (AWI) selbstbewusst. Der...

Im Focus: Mit Barcodes der Zellentwicklung auf der Spur

Darüber, wie sich Blutzellen entwickeln, existieren verschiedene Auffassungen – sie basieren jedoch fast ausschließlich auf Experimenten, die lediglich Momentaufnahmen widerspiegeln. Wissenschaftler des Deutschen Krebsforschungszentrums stellen nun im Fachjournal Nature eine neue Technik vor, mit der sich das Geschehen dynamisch erfassen lässt: Mithilfe eines „Zufallsgenerators“ versehen sie Blutstammzellen mit genetischen Barcodes und können so verfolgen, welche Zelltypen aus der Stammzelle hervorgehen. Diese Technik erlaubt künftig völlig neue Einblicke in die Entwicklung unterschiedlicher Gewebe sowie in die Krebsentstehung.

Wie entsteht die Vielzahl verschiedener Zelltypen im Blut? Diese Frage beschäftigt Wissenschaftler schon lange. Nach der klassischen Vorstellung fächern sich...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

International führende Informatiker in Paderborn

21.08.2017 | Veranstaltungen

Wissenschaftliche Grundlagen für eine erfolgreiche Klimapolitik

21.08.2017 | Veranstaltungen

DGI-Forum in Wittenberg: Fake News und Stimmungsmache im Netz

21.08.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Fraunhofer IPM präsentiert »Deep Learning Framework« zur automatisierten Interpretation von 3D-Daten

22.08.2017 | Informationstechnologie

Globale Klimaextreme nach Vulkanausbrüchen

22.08.2017 | Geowissenschaften

RWI/ISL-Containerumschlag-Index erreicht neuen Höchstwert

22.08.2017 | Wirtschaft Finanzen