Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Auf die Plätze, Phenylalanin los!

03.05.2013
Ionenkanäle sind wichtige Angriffspunkte zahlreicher Medikamente. Ein junges Forschungsteam unter der Leitung von Anna Stary-Weinzinger, Pharmakologin an der Universität Wien, hat den Öffnungs- und Schließmechanismus dieser Kanäle untersucht: Erstmals sahen WissenschafterInnen einem Protein mit mehr als 400 Aminosäuren bei der Arbeit zu, und sie entdeckten die Schlüsselrolle von Phenylalanin.

Ermöglicht wurde dies durch die Rechenleistung des Vienna Scientific Cluster (VSC), dem schnellsten Computer Österreichs. Ihre Erkenntnisse publizieren sie aktuell in der renommierten Fachzeitschrift PLOS Computational Biology.


Schematische Darstellung des Öffnungs- und Schließmechanismus eines Ionenkanals
Copyright: Anna Stary-Weinzinger

Jede Zelle unseres Körpers grenzt sich von der Umgebung durch eine dünne Membran ab. Um ihre biologischen Funktionen aufrecht zu halten und Signale weiter zu leiten, gibt es in der Membran spezielle Proteine, so genannte Ionenkanäle. Anna Stary-Weinzinger und Tobias Linder von der Universität Wien sowie Bert de Groot vom Max Planck Institut für Biophysikalische Chemie in Göttingen fanden nun heraus, dass beim Öffnungs- und Schließmechanismus von Ionenkanälen der Aminosäure F114 (Phenylalanin) eine wichtige Schlüsselrolle zukommt. Sie dient gewissermaßen als Startsignal für die Öffnungsbewegung von Ionenkanälen.

"Diese Proteine sind hochselektiv für unterschiedliche Ionen wie Natrium, Kalium und Chlorid und ermöglichen je nach Bedarf eine enorme Durchflussrate von bis zu 100 Millionen Ionen pro Sekunde", erklärt Stary-Weinzinger, Leiterin des Forschungsprojekts und Postdoc am Department für Pharmakologie und Toxikologie der Universität Wien. "Diese molekularen Schaltstellen steuern eine Vielzahl von lebenswichtigen Körperfunktionen wie die Weiterleitung von Nervenimpulsen, Regulierung unseres Herzrhythmus und Freisetzung von Neurotransmittern. Bereits leichte Funktionsstörungen der Kanäle, ausgelöst durch den Austausch einer einzigen Aminosäure, können zu schweren Erkrankungen wie Herzrhythmusstörungen, Migräne, Diabetes, bis hin zur Entstehung von Krebs führen."

Neue Medikamente durch Verständnis der Funktionsweise von Ionenkanälen

Ionenkanäle sind wichtige Angriffspunkte zahlreicher Medikamente. Zehn Prozent der eingesetzten Arzneimittel erzielen ihre Wirkung durch Interaktion mit Ionenkanälen. Die Erforschung dieser Proteine hilft festzustellen, ob Medikamente im Körper an der richtigen Stelle wirken bzw. ob bessere Arzneistoffe entwickelt werden können. Als Grundlage der Medikamentenforschung ist zunächst allerdings ein genaues Verständnis der Funktionsweise der Kanäle unerlässlich, denn zur Regulation des Öffnungs- und Schließmechanismus sind noch viele Fragen offen.

Vienna Scientific Cluster zeigt Ionenkanäle in Aktion

Um diesen Proteinen auf atomarer Ebene bei der Arbeit – beim Öffnen und Schließen – zu sehen zu können, sind aufwändige Moleküldynamik-Simulationen am Computer erforderlich. Der für diese Analyse notwendige Rechenaufwand konnte mit Hilfe des Vienna Scientific Cluster (VSC), dem schnellsten Computer Österreichs, der von der Universität Wien, der Technischen Universität Wien und der Universität für Bodenkultur betrieben wird, geleistet werden. Mit Hilfe des VSC war erstmals möglich, für ein großes Protein (> 400 Aminosäuren) die Energielandschaft zwischen offenem und geschlossenem Zustand zu ermitteln. Dabei konnten die WissenschafterInnen zeigen, dass die zwei Zustände von zwei unterschiedlich großen Energiebarrieren getrennt werden.

Phenylalanin dient als Schalter für Zustandsänderungen des Kanals

Die Bewegung einer speziellen Aminosäure, des Phenylalaninrests 114, ist eng an die erste, kleinere Energiebarriere gekoppelt, so die überraschende Entdeckung der Forschungsgruppe. "Dieser Phenylalaninrest dient als Schalter, um den Ionenkanal aus dem geschlossenen Zustand zu entsichern", erklärt Tobias Linder, Doktorand und Forschungsstipendiat der Universität Wien. Erst nach diesen lokal begrenzten Strukturveränderungen ist es dem Kanal möglich, in einer großen "globalen" Bewegung die Pore vollständig zu öffnen. Dieser Übergang vom entsicherten Zwischenzustand zur vollständig geöffneten Pore ist mit einer zweiten, sehr viel größeren Energiebarriere verbunden.

Gefördert wurde diese Arbeit vom FWF-Doktoratskolleg "Molecular Drug Targets" (MolTag), welches von Steffen Hering, Vorstand des Departments für Pharmakologie und Toxikologie der Fakultät für Lebenswissenschaften der Universität Wien, geleitet wird.

Publikation:

T. Linder, BL de Groot, A. Stary-Weinzinger: Probing the energy landscape of activation gating of the bacterial potassium channel KcsA. PLOS Computational Biology, Mai 2013.
DOI: 10.1371/journal.pcbi.1003058

Wissenschaftlicher Kontakt
Mag. Dr. Anna Stary-Weinzinger
Department für Pharmakologie und Toxikologie
Universität Wien
1090 Wien, Althanstraße 14 (UZA II)
T +43-1-4277-553 11
anna.stary@univie.ac.at

Rückfragehinweis
Mag. Veronika Schallhart
Pressebüro der Universität Wien
Forschung und Lehre
Universität Wien
1010 Wien, Universitätsring 1
T +43-1-4277-175 30
M +43-664-602 77-175 30
veronika.schallhart@univie.ac.at

Michaela Wein | Universität Wien
Weitere Informationen:
http://www.univie.ac.at

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Zirkuläre RNA wird in Proteine übersetzt
24.03.2017 | Max-Delbrück-Centrum für Molekulare Medizin in der Helmholtz-Gemeinschaft

nachricht Wegweisende Erkenntnisse für die Biomedizin: NAD⁺ hilft bei Reparatur geschädigter Erbinformationen
24.03.2017 | Universität Bayreuth

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Wegweisende Erkenntnisse für die Biomedizin: NAD⁺ hilft bei Reparatur geschädigter Erbinformationen

Eine internationale Forschergruppe mit dem Bayreuther Biochemiker Prof. Dr. Clemens Steegborn präsentiert in 'Science' neue, für die Biomedizin wegweisende Forschungsergebnisse zur Rolle des Moleküls NAD⁺ bei der Korrektur von Schäden am Erbgut.

Die Zellen von Menschen und Tieren können Schäden an der DNA, dem Träger der Erbinformation, bis zu einem gewissen Umfang selbst reparieren. Diese Fähigkeit...

Im Focus: Designer-Proteine falten DNA

Florian Praetorius und Prof. Hendrik Dietz von der Technischen Universität München (TUM) haben eine neue Methode entwickelt, mit deren Hilfe sie definierte Hybrid-Strukturen aus DNA und Proteinen aufbauen können. Die Methode eröffnet Möglichkeiten für die zellbiologische Grundlagenforschung und für die Anwendung in Medizin und Biotechnologie.

Desoxyribonukleinsäure – besser bekannt unter der englischen Abkürzung DNA – ist die Trägerin unserer Erbinformation. Für Prof. Hendrik Dietz und Florian...

Im Focus: Fliegende Intensivstationen: Ultraschallgeräte in Rettungshubschraubern können Leben retten

Etwa 21 Millionen Menschen treffen jährlich in deutschen Notaufnahmen ein. Im Kampf zwischen Leben und Tod zählt für diese Patienten jede Minute. Wenn sie schon kurz nach dem Unfall zielgerichtet behandelt werden können, verbessern sich ihre Überlebenschancen erheblich. Damit Notfallmediziner in solchen Fällen schnell die richtige Diagnose stellen können, kommen in den Rettungshubschraubern der DRF Luftrettung und zunehmend auch in Notarzteinsatzfahrzeugen mobile Ultraschallgeräte zum Einsatz. Experten der Deutschen Gesellschaft für Ultraschall in der Medizin e.V. (DEGUM) schulen die Notärzte und Rettungsassistenten.

Mit mobilen Ultraschallgeräten können Notärzte beispielsweise innere Blutungen direkt am Unfallort identifizieren und sie bei Bedarf auch für Untersuchungen im...

Im Focus: Gigantische Magnetfelder im Universum

Astronomen aus Bonn und Tautenburg in Thüringen beobachteten mit dem 100-m-Radioteleskop Effelsberg Galaxienhaufen, das sind Ansammlungen von Sternsystemen, heißem Gas und geladenen Teilchen. An den Rändern dieser Galaxienhaufen fanden sie außergewöhnlich geordnete Magnetfelder, die sich über viele Millionen Lichtjahre erstrecken. Sie stellen die größten bekannten Magnetfelder im Universum dar.

Die Ergebnisse werden am 22. März in der Fachzeitschrift „Astronomy & Astrophysics“ veröffentlicht.

Galaxienhaufen sind die größten gravitativ gebundenen Strukturen im Universum, mit einer Ausdehnung von etwa zehn Millionen Lichtjahren. Im Vergleich dazu ist...

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Rund 500 Fachleute aus Wissenschaft und Wirtschaft diskutierten über technologische Zukunftsthemen

24.03.2017 | Veranstaltungen

Lebenswichtige Lebensmittelchemie

23.03.2017 | Veranstaltungen

Die „Panama Papers“ aus Programmierersicht

22.03.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Rund 500 Fachleute aus Wissenschaft und Wirtschaft diskutierten über technologische Zukunftsthemen

24.03.2017 | Veranstaltungsnachrichten

Förderung des Instituts für Lasertechnik und Messtechnik in Ulm mit rund 1,63 Millionen Euro

24.03.2017 | Förderungen Preise

TU-Bauingenieure koordinieren EU-Projekt zu Recycling-Beton von über sieben Millionen Euro

24.03.2017 | Förderungen Preise