Pilzsporen zerstören sich selbst

Ein Forscherteam hat herausgefunden, dass das Immunsystem des Menschen bei Pilzsporen in der Lunge eine Art Selbstmord-Mechanismus auslöst, der dazu führt, dass die Pilzsporen sich selbst zerstören.

Ein internationales Forscherteam mit Beteiligung der Universität Göttingen hat herausgefunden, wie sich der menschliche Körper gegen Pilzinfektionen schützt. Mit jedem Atemzug gelangen Pilzsporen in die Lunge, wo sie gefährliche Infektionen auslösen können.

Die Wissenschaftlerinnen und Wissenschaftler aus Deutschland, Israel und den USA fanden nun heraus, dass das Immunsystem des Menschen bei den Pilzsporen in der Lunge eine Art Selbstmord-Mechanismus auslöst, der dazu führt, dass die Pilzsporen sich selbst zerstören. Die Ergebnisse sind in der Fachzeitschrift Science erschienen.

An invasiven Pilzinfektionen sterben jedes Jahr weltweit genauso viele Menschen wie an Malaria oder Tuberkulose. Bei Menschen mit geschwächtem Immunsystem können die Sporen über die Lunge ins Blut und von dort aus in Organe einschließlich des Gehirns gelangen.

Das kann zu gefährlichen Mykosen führen, die häufig tödlich enden. Die Forscherinnen und Forscher gingen nun der Frage nach, weshalb Menschen mit intaktem Immunsystem nicht häufiger krank werden, obwohl wir jeden Tag bis zu zehn Milliarden Pilzsporen einatmen, und wie ein intaktes Immunsystem die Pilzsporen daran hindert, sich im Körper zu verbreiten.

„Wir haben herausgefunden, dass unsere menschlichen neutrophilen Immunzellen in der Lunge bei den Pilzsporen eine Art Selbstmord-Mechanismus auslösen“, erläutert Prof. Dr. Gerhard Braus, Leiter der Abteilung Molekulare Mikrobiologie und Genetik der Universität Göttingen. Pilzsporen verfügen über ein Schutzprotein gegen den pilzlichen Selbstmord (Bir1).

„Gelangen Pilzsporen in die Lunge, sendet die Immunzelle ein Signal aus, welches das Schutzprotein Bir1 ausschaltet“, so Braus. „Als Folge davon zerstört sich die Pilzspore selbst.“ Enthält ein Pilz mehrere Gene für Bir1 und damit auch mehr Bir1-Protein als normal, bleibt die Pilzspore geschützt und zerstört sich nicht. Die Ergebnisse der Studie könnten die Grundlage bilden für neue therapeutische Strategien, um Patienten mit Pilzinfektionen zu heilen.

Originalveröffentlichung: Neta Shlezinger et al. Sterilizing immunity in the lung relies on targeting fungal apoptosis-like programmed cell death. Science 2017. Doi: 10.1126/science.aan0365

Kontakt:
Prof. Dr. Gerhard Braus
Georg-August-Universität Göttingen
Fakultät für Biologie und Psychologie – Institut für Mikrobiologie und Genetik
Grisebachstraße 8, 37077 Göttingen, Telefon (0551) 39-33771
E-Mail: gbraus@gwdg.de, Internet: www.uni-goettingen.de/molmibio

http://www.uni-goettingen.de/de/3240.html?cid=5910

Media Contact

Romas Bielke idw - Informationsdienst Wissenschaft

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie

Der innovations-report bietet im Bereich der "Life Sciences" Berichte und Artikel über Anwendungen und wissenschaftliche Erkenntnisse der modernen Biologie, der Chemie und der Humanmedizin.

Unter anderem finden Sie Wissenswertes aus den Teilbereichen: Bakteriologie, Biochemie, Bionik, Bioinformatik, Biophysik, Biotechnologie, Genetik, Geobotanik, Humanbiologie, Meeresbiologie, Mikrobiologie, Molekularbiologie, Zellbiologie, Zoologie, Bioanorganische Chemie, Mikrochemie und Umweltchemie.

Zurück zur Startseite

Kommentare (0)

Schreiben Sie einen Kommentar

Neueste Beiträge

Neues topologisches Metamaterial

… verstärkt Schallwellen exponentiell. Wissenschaftlerinnen und Wissenschaftler am niederländischen Forschungsinstitut AMOLF haben in einer internationalen Kollaboration ein neuartiges Metamaterial entwickelt, durch das sich Schallwellen auf völlig neue Art und Weise…

Astronomen entdecken starke Magnetfelder

… am Rand des zentralen schwarzen Lochs der Milchstraße. Ein neues Bild des Event Horizon Telescope (EHT) hat starke und geordnete Magnetfelder aufgespürt, die vom Rand des supermassereichen schwarzen Lochs…

Faktor für die Gehirnexpansion beim Menschen

Was unterscheidet uns Menschen von anderen Lebewesen? Der Schlüssel liegt im Neokortex, der äußeren Schicht des Gehirns. Diese Gehirnregion ermöglicht uns abstraktes Denken, Kunst und komplexe Sprache. Ein internationales Forschungsteam…

Partner & Förderer