Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Pilze wecken Bakterien aus Dornröschenschlaf

07.06.2017

Wenn Böden austrocknen, hat das einen negativen Einfluss auf die Aktivität von Bodenbakterien. UFZ-Forscher konnten nun mithilfe modernster Analyse- und bildgebender Verfahren zeigen, dass Pilze die Aktivität von Bakterien in ausgetrockneten und nährstoffarmen Habitaten erhöhen, indem sie sie mit Wasser und Nährstoffen versorgen. Die Fähigkeit der Pilze, Trockenstress in Böden zu regulieren und so für den Erhalt von Ökosystemfunktionen zu sorgen, ist gerade vor dem Hintergrund des Klimawandels eine wichtige Erkenntnis.

Als feines Geflecht dünner Fäden – sogenannter Hyphen – durchziehen viele Pilze das Erdreich. Auf der Suche nach Wasser und Nährstoffen wachsen die Hyphen in unterschiedlichste Richtungen und vergrößern so stetig das Pilznetzwerk. Wird der Pilz fündig, werden Wasser und Nährstoffe aufgenommen und durch die Hyphen transportiert.


Pilzhyphe und ausgekeimten Zellen des Bakteriums Bacillus subtilis zeigen den Einbau des stabilen Isotops 15N (orange/rot), mit dem die stickstoffhaltigen Nährstoffe markiert wurden.

UFZ


Die NanoSIMs ermöglicht es, Elemente und Isotope an Oberflächen von Zellen sowie chemische Veränderungen in Zellen gut nachzuweisen.

André Künzelmann / UFZ

So werden auch die Teile des Pilzgeflechts gut versorgt, die sich beispielsweise in trockenen oder nährstoffarmen Bereichen des Bodens befinden. Von dem Transport durch die Pilz-Pipelines profitiert aber offenbar nicht nur der Pilz selbst: Auch Bakterien werden auf diese Weise mit lebenswichtigem Wasser und Nährstoffen beliefert. Das konnte jetzt ein UFZ-Forscherteam in seiner aktuellen im Fachmagazin Nature Communications erschienenen Studie zeigen.

„Dass Pilze, was den Feuchtigkeitshaushalt von Böden angeht, eine wichtige Rolle spielen, wird schon lange vermutet“, sagt UFZ-Umweltbiotechnologe Prof. Matthias Kästner. „Nun konnten wir mit Methoden der Sekundärionen-Massenspektrometrie (Nano-SIMS und ToF-SIMS) der am UFZ etablierten Forschungsplattform ProVIS endlich den experimentellen Beweis erbringen.“

In ihren Untersuchungen haben die Forscher den Wasser-, Substrat- und Nährstofftransport durch die Hyphen mikroskopisch kleiner Pilze genauer unter die Lupe genommen. Dafür ließen sie die Pilze auf einem Nährmedium aus Wasser, Glucose und stickstoffhaltigen Nährstoffen wachsen. Die Pilz-Hyphen mussten dabei eine trockene und nährstofflose Zone passieren, um dann in einen neuen Bereich mit Nährmedium hineinzuwachsen.

In der unwirtlichen Übergangszone befanden sich Sporen des weitverbreiteten Bodenbakteriums Bacillus subtilis. Sporen sind inaktive Dauerstadien von Bakterien, die ausgebildet werden, wenn für das bakterielle Wachstum nicht genügend Wasser, Nahrung und Nährstoffe vorhanden sind. Die Bakterien befinden sich dann in einer Art Tiefschlaf, aus dem sie nur erwachen, wenn die Lebensbedingungen für sie wieder günstiger werden.

Und in der Tat verbesserten sich diese im Experiment durch das Wachstum der Pilze: „Als die Pilz-Hyphen durch die trockene Zone hindurchwuchsen, keimten die Sporen der Bakterien aus, und wir konnten eine eindeutige mikrobielle Aktivität feststellen“, sagt UFZ-Umweltmikrobiologe Dr. Lukas Y. Wick. „Die Pilze haben die Umweltbedingungen für die Bakterien offensichtlich verbessert und sie aus ihrem Dornröschenschlaf geweckt.“

Doch was genau passiert auf chemischer Ebene, wenn in unmittelbarer Nähe von Bakteriensporen Pilz-Hyphen wachsen? Um das herauszufinden, hatten die Wissenschaftler das Wasser, die Glucose und die stickstoffhaltigen Nährstoffe des Nährmediums für die Pilze vorab mit sogenannten stabilen Isotopen markiert. Sollten diese Stoffe vom Pilz in die Bakterien übergehen, wäre dies mithilfe der Isotopenmarkierung und der NanoSIMS-Methode auf kleinster Skala und räumlich hochaufgelöst nachweisbar.

„Mit der NanoSIMS-Methode ist es möglich, die Verteilung von Atomen und Molekülen und so auch Stoffwechselprozesse sichtbar zu machen“, erklärt Kästner. „Und tatsächlich konnten wir in den Bakterien die stabilen Isotope des markierten Wassers, der Glucose und den stickstoffhaltigen Nährstoffen nachweisen, die nur die Pilze liefern konnten.“

Mit ihrer Studie ist den UFZ-Forschern eine weitere wichtige Erkenntnis über Pilze und ihre wichtige Funktion in Böden gelungen: Pilze stellen Pumpstationen und Pipelines für Wasser, Substrate und Nährstoffe dar, können unwirtliche Standorte besiedeln und für Bakterien erschließen – und so die mikrobielle Aktivität im Boden ankurbeln.

In vorherigen Untersuchungen konnten die Forscher bereits zeigen, dass Pilz-Hyphen für Bakterien als eine Art Pilz-Autobahn fungieren, auf denen sie sich fortbewegen können und ein Hotspot für bakteriellen Gentransfer darstellen. Wick: „Die Ergebnisse unserer aktuellen Studie zeigen erneut, dass Pilze durch ihre Interaktion mit Bakterien eine bedeutende und bislang unterschätzte Rolle im Ökosystem Boden spielen.“

Ist ein Boden zum Beispiel durch Schadstoffe belastet, können diese durch Bakterien abgebaut werden. Ist der Boden allerdings zu trocken, kommen die Abbauprozesse zum Erliegen. „Ist die Trockenperiode zeitlich begrenzt, wirken Pilze stabilisierend und können die Bodenprozesse am Laufen halten.. Das könnte gerade in Hinblick auf die Auswirkungen des Klimawandels von Bedeutung sein, wenn das Verhältnis von trockenen zu feuchten Bodenbereichen dramatisch zunehmen wird“, sagt Kästner.

In zukünftigen Untersuchungen wollen die Forscher daher noch näher an das echte Ökosystem Boden heran. „Wir wollen Bodenexperimente unter unterschiedlichen Umweltbedingungen durchführen und herausfinden, welchen Einfluss das Pilzwachstum dann jeweils auf den Schadstoffabbau hat“, sagt Wick und ergänzt: „Es ist wichtig, dass wir die Rolle der Pilze für das Ökosystem Boden noch besser verstehen. Denn nur wenn wir wissen, wie Böden funktionieren, können wir auf Veränderungen wie zum Beispiel durch den Klimawandel mit sinnvollen Entscheidungen reagieren.“

Publikation:
Anja Worrich, Hryhoriy Stryhanyuk, Niculina Musat, Sara König, Thomas Banitz, Florian Centler, Karin Frank, Martin Thullner, Hauke Harms, Hans-Hermann Richnow, Anja Miltner, Matthias Kästner, Lukas Y Wick: Mycelium-mediated transfer of water and nutrients stimulates bacterial activity in dry and oligotrophic environments, DOI: 10.1038/NCOMMS15472
http://dx.doi.org/10.1038/ncomms15472

Weitere Ansprechpartner:

Prof. Dr. Matthias Kästner
Leiter UFZ-Department Umweltbiotechnologie
Telefon: +49 341 235-1235
E-Mail: matthias.kaestner@ufz.de

Dr. Lukas Y. Wick
UFZ-Department Umweltmikrobiologie
Telefon: +49 341 235-1316
E-Mail: lukas.wick@ufz.de

Dr. Niculina Musat
ProVIS, UFZ-Department Isotopenbiogeochemie
Phone: +49 341 235-4656
Email: niculina.musat@ufz.de

Weiterführende Links:

Gentransfer auf der Pilzautobahn: http://www.ufz.de/index.php?de=36336&webc_pm=53/2016

Video "Bakterien auf der Pilzautobahn: https://www.youtube.com/watch?v=AnsYh6511Ic

Weitere Informationen:

http://www.ufz.de/index.php?de=36336&webc_pm=17/2017

Susanne Hufe | Helmholtz-Zentrum für Umweltforschung - UFZ

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Wirt oder Gast? Proteomik gibt neue Aufschlüsse über Reaktion von Rifforganismen auf Umweltstress
23.02.2018 | Leibniz-Zentrum für Marine Tropenforschung (ZMT)

nachricht Wie Zellen unterschiedlich auf Stress reagieren
23.02.2018 | Max-Planck-Institut für molekulare Genetik

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Vorstoß ins Innere der Atome

Mit Hilfe einer neuen Lasertechnologie haben es Physiker vom Labor für Attosekundenphysik der LMU und des MPQ geschafft, Attosekunden-Lichtblitze mit hoher Intensität und Photonenenergie zu produzieren. Damit konnten sie erstmals die Interaktion mehrere Photonen in einem Attosekundenpuls mit Elektronen aus einer inneren atomaren Schale beobachten konnten.

Wer die ultraschnelle Bewegung von Elektronen in inneren atomaren Schalen beobachten möchte, der benötigt ultrakurze und intensive Lichtblitze bei genügend...

Im Focus: Attoseconds break into atomic interior

A newly developed laser technology has enabled physicists in the Laboratory for Attosecond Physics (jointly run by LMU Munich and the Max Planck Institute of Quantum Optics) to generate attosecond bursts of high-energy photons of unprecedented intensity. This has made it possible to observe the interaction of multiple photons in a single such pulse with electrons in the inner orbital shell of an atom.

In order to observe the ultrafast electron motion in the inner shells of atoms with short light pulses, the pulses must not only be ultrashort, but very...

Im Focus: Good vibrations feel the force

Eine Gruppe von Forschern um Andrea Cavalleri am Max-Planck-Institut für Struktur und Dynamik der Materie (MPSD) in Hamburg hat eine Methode demonstriert, die es erlaubt die interatomaren Kräfte eines Festkörpers detailliert auszumessen. Ihr Artikel Probing the Interatomic Potential of Solids by Strong-Field Nonlinear Phononics, nun online in Nature veröffentlich, erläutert, wie Terahertz-Laserpulse die Atome eines Festkörpers zu extrem hohen Auslenkungen treiben können.

Die zeitaufgelöste Messung der sehr unkonventionellen atomaren Bewegungen, die einer Anregung mit extrem starken Lichtpulsen folgen, ermöglichte es der...

Im Focus: Good vibrations feel the force

A group of researchers led by Andrea Cavalleri at the Max Planck Institute for Structure and Dynamics of Matter (MPSD) in Hamburg has demonstrated a new method enabling precise measurements of the interatomic forces that hold crystalline solids together. The paper Probing the Interatomic Potential of Solids by Strong-Field Nonlinear Phononics, published online in Nature, explains how a terahertz-frequency laser pulse can drive very large deformations of the crystal.

By measuring the highly unusual atomic trajectories under extreme electromagnetic transients, the MPSD group could reconstruct how rigid the atomic bonds are...

Im Focus: Verlässliche Quantencomputer entwickeln

Internationalem Forschungsteam gelingt wichtiger Schritt auf dem Weg zur Lösung von Zertifizierungsproblemen

Quantencomputer sollen künftig algorithmische Probleme lösen, die selbst die größten klassischen Superrechner überfordern. Doch wie lässt sich prüfen, dass der...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

Von festen Körpern und Philosophen

23.02.2018 | Veranstaltungen

Spannungsfeld Elektromobilität

23.02.2018 | Veranstaltungen

DFG unterstützt Kongresse und Tagungen - April 2018

21.02.2018 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Vorstoß ins Innere der Atome

23.02.2018 | Physik Astronomie

Wirt oder Gast? Proteomik gibt neue Aufschlüsse über Reaktion von Rifforganismen auf Umweltstress

23.02.2018 | Biowissenschaften Chemie

Wie Zellen unterschiedlich auf Stress reagieren

23.02.2018 | Biowissenschaften Chemie

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics