Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Ein Pilz mit vielen Strategien

02.04.2010
Der Erreger des Maisbeulenbrandes erzeugt in Blättern und Blüten Tumore auf unterschiedliche Weise

Für Landwirte ist er ein großes Ärgernis, für viele Mexikaner dagegen eine Delikatesse. Die Rede ist von Ustilago maydis, dem Erreger des Maisbeulenbrandes. Diese Pilzart infiziert Stängel, Blätter und Blüten von Maispflanzen und verursacht die Bildung von Tumoren - im Maiskolben entsteht dadurch die in der mexikanischen Küche geschätzte Delikatesse Cuitlacoche. Gunther Döhlemann vom Max-Planck-Institut für terrestrische Mikrobiologie in Marburg zufolge nutzt der Pilz offenbar unterschiedliche Wege, um in den verschiedenen Geweben die Bildung von Tumoren anzuregen. Zusammen mit Kollegen aus den USA zeigt der Wissenschaftler damit erstmals, dass Krankheitserreger eigene Proteine organspezifisch bilden und so den Verlauf einer Infektion je nach Gewebe unterschiedlich steuern. (Science, 2. April 2010)


Durch Ustilago maydis verursachte Tumorbildung in einem Maiskolben. Bild: Rolf Rösser


Ustilago maydis breitet sich innerhalb von lebenden Maiszellen aus. Zu sehen ist eine Pilzhyphe (rot), die um ihre Wachstumsspitze ein Protein sekretiert (grün). Die Zellwand der Maiszelle ist in blau dargestellt. Bild: Gunther Döhlemann

Ustilago maydis kann ganz unterschiedliche Pflanzenteile infizieren. Er benötigt dazu lediglich teilungsfähige Gewebe, in denen er sich ausbreiten kann. Der Pilz dringt dabei durch die Zellwand in die Pflanzenzellen ein, jedoch ohne diese zu zerstören. Vielmehr nutzt er die Wirtszellen zur eigenen Nährstoffversorgung und regt sie zur Teilung an. Allerdings reagieren Blatt-, Stängel- und Blütengewebe unterschiedlich auf solche Signale zur Zellteilung. Der Pilz muss also sein Protein-Arsenal an das jeweilige Organ anpassen, damit er dort das Wachstum von Tumoren auslösen kann.

Zusammen mit der Arbeitsgruppe um Virginia Walbot an der Stanford Universität hat Gunther Döhlemann vom Marburger Max-Planck-Institut entdeckt, dass dies tatsächlich der Fall ist. "Ustilago maydis erkennt gewissermaßen, in welchem Organ er sich befindet, und ob es sich um einen Keimling oder eine ausgewachsene Pflanze handelt. Der Erreger bildet je nach Gewebetyp unterschiedliche Proteine. Manche werden verstärkt, andere weniger produziert", erklärt Gunther Döhlemann. So werden mehr als ein Drittel der Ustilago-Proteine nur dann gebildet, wenn der Pilz die Blätter infiziert hat. Als Folge werden auch von der Wirtspflanze in den infizierten Blättern andere Proteine produziert als bei einer Infektion der Blüten. Die Analyse zeigte beispielsweise, dass Ustilago die Proteinproduktion in den Blättern stärker verändert als in den Blüten oder im Stängel. In den Blüten sind also weniger Änderungen erforderlich, um Tumore hervorzurufen.

Bislang ging man davon aus, dass Infektionen einer Wirtspflanze durch ein und denselben Krankheitserreger nach einem festgelegten Muster ablaufen. Die Ergebnisse zeigen aber, dass die Erreger durchaus flexibel sein können. Diese Erkenntnisse könnten auch eine Erklärung für die oftmals schwierige Entwicklung von resistenten Pflanzensorten liefern. Denn viele vermeintliche Resistenzfaktoren verhindern möglicherweise nur die Infektion eines bestimmten Gewebetyps. "Der Erreger könnte eine solche oder organspezifische Resistenz also umgehen und beispielsweise statt der Blüten die Blätter befallen. Eine vollständige Resistenz lässt sich demnach nur erreichen, wenn ein Weg versperrt wird, den der Krankheitserreger in allen Geweben benutzt", sagt Gunther Döhlemann.

Auch solche Proteine produziert Ustilago maydis. Er unterdrückt nämlich die Fähigkeit der Maispflanze, fremde Proteine zu erkennen. Mit dieser Tarnkappe werden die Pilzhyphen für das Immunsystem der Pflanze unsichtbar und können sich so unbehelligt von Zelle zu Zelle ausbreiten. Offenbar sind die basalen Abwehrmechanismen der Pflanze jedoch auch in den verschiedenen Organen sehr ähnlich. Ein Pilz, dem entscheidende Bestandteile seiner Tarnkappe fehlen, wird von der Pflanze in allen ihren Geweben aufgespürt und bekämpft.

Originalpublikation:
Maize Tumors Caused by Ustilago maydis Require Organ-Specific Genes in Host and Pathogen
David S. Skibbe, Gunther Doehlemann, John Fernandes, Virginia Walbot
Science, 2. April 2010
Weitere Informationen erhalten Sie von:
Dr. Gunther Döhlemann
MPI für terrestrische Mikrobiologie
Tel.: +49 6421 / 178-602
Email: doehlemann@mpi-marburg.mpg.de
Dr. Astrid Brandis-Heep, Presse und Öffentlichkeit
Tel.: +49 6421 / 28-21528
E-mail: brandish@mpi-marburg.mpg.de

Barbara Abrell | Max-Planck-Gesellschaft
Weitere Informationen:
http://www.mpg.de

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Zirkuläre RNA wird in Proteine übersetzt
24.03.2017 | Max-Delbrück-Centrum für Molekulare Medizin in der Helmholtz-Gemeinschaft

nachricht Wegweisende Erkenntnisse für die Biomedizin: NAD⁺ hilft bei Reparatur geschädigter Erbinformationen
24.03.2017 | Universität Bayreuth

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Wegweisende Erkenntnisse für die Biomedizin: NAD⁺ hilft bei Reparatur geschädigter Erbinformationen

Eine internationale Forschergruppe mit dem Bayreuther Biochemiker Prof. Dr. Clemens Steegborn präsentiert in 'Science' neue, für die Biomedizin wegweisende Forschungsergebnisse zur Rolle des Moleküls NAD⁺ bei der Korrektur von Schäden am Erbgut.

Die Zellen von Menschen und Tieren können Schäden an der DNA, dem Träger der Erbinformation, bis zu einem gewissen Umfang selbst reparieren. Diese Fähigkeit...

Im Focus: Designer-Proteine falten DNA

Florian Praetorius und Prof. Hendrik Dietz von der Technischen Universität München (TUM) haben eine neue Methode entwickelt, mit deren Hilfe sie definierte Hybrid-Strukturen aus DNA und Proteinen aufbauen können. Die Methode eröffnet Möglichkeiten für die zellbiologische Grundlagenforschung und für die Anwendung in Medizin und Biotechnologie.

Desoxyribonukleinsäure – besser bekannt unter der englischen Abkürzung DNA – ist die Trägerin unserer Erbinformation. Für Prof. Hendrik Dietz und Florian...

Im Focus: Fliegende Intensivstationen: Ultraschallgeräte in Rettungshubschraubern können Leben retten

Etwa 21 Millionen Menschen treffen jährlich in deutschen Notaufnahmen ein. Im Kampf zwischen Leben und Tod zählt für diese Patienten jede Minute. Wenn sie schon kurz nach dem Unfall zielgerichtet behandelt werden können, verbessern sich ihre Überlebenschancen erheblich. Damit Notfallmediziner in solchen Fällen schnell die richtige Diagnose stellen können, kommen in den Rettungshubschraubern der DRF Luftrettung und zunehmend auch in Notarzteinsatzfahrzeugen mobile Ultraschallgeräte zum Einsatz. Experten der Deutschen Gesellschaft für Ultraschall in der Medizin e.V. (DEGUM) schulen die Notärzte und Rettungsassistenten.

Mit mobilen Ultraschallgeräten können Notärzte beispielsweise innere Blutungen direkt am Unfallort identifizieren und sie bei Bedarf auch für Untersuchungen im...

Im Focus: Gigantische Magnetfelder im Universum

Astronomen aus Bonn und Tautenburg in Thüringen beobachteten mit dem 100-m-Radioteleskop Effelsberg Galaxienhaufen, das sind Ansammlungen von Sternsystemen, heißem Gas und geladenen Teilchen. An den Rändern dieser Galaxienhaufen fanden sie außergewöhnlich geordnete Magnetfelder, die sich über viele Millionen Lichtjahre erstrecken. Sie stellen die größten bekannten Magnetfelder im Universum dar.

Die Ergebnisse werden am 22. März in der Fachzeitschrift „Astronomy & Astrophysics“ veröffentlicht.

Galaxienhaufen sind die größten gravitativ gebundenen Strukturen im Universum, mit einer Ausdehnung von etwa zehn Millionen Lichtjahren. Im Vergleich dazu ist...

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Rund 500 Fachleute aus Wissenschaft und Wirtschaft diskutierten über technologische Zukunftsthemen

24.03.2017 | Veranstaltungen

Lebenswichtige Lebensmittelchemie

23.03.2017 | Veranstaltungen

Die „Panama Papers“ aus Programmierersicht

22.03.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Rund 500 Fachleute aus Wissenschaft und Wirtschaft diskutierten über technologische Zukunftsthemen

24.03.2017 | Veranstaltungsnachrichten

Förderung des Instituts für Lasertechnik und Messtechnik in Ulm mit rund 1,63 Millionen Euro

24.03.2017 | Förderungen Preise

TU-Bauingenieure koordinieren EU-Projekt zu Recycling-Beton von über sieben Millionen Euro

24.03.2017 | Förderungen Preise