Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Photosynthese - Neuer Manager für die grüne Energiefabrik

03.03.2014

Eine neue Proteinfamilie kommt in Grünalgen sehr oft vor, in Landpflanzen dagegen gibt es nur ein einziges derartiges Protein – das aber ist dort für eine effiziente Photosynthese wichtig, wie eine Studie zeigt.

Grünalgen und höhere Pflanzen besitzen bestimmte Zellorganellen – die Chloroplasten –, in denen sie Photosynthese betreiben, also mithilfe von Sonnenlicht Energie und Kohlenhydrate gewinnen. Chloroplasten stammen von ehemals freilebenden Einzellern ab, die vor Jahrmillionen von Jahren von Wirtszellen aufgenommen wurden.

Deshalb verfügen sie noch heute über eine eigene – allerdings reduzierte – DNA, die etwa 100 Gene umfasst. Gesteuert werden diese Gene vor allem von sogenannten Helical repeat Proteinen (PPRs, TPRs), deren Baupläne in der DNA im Zellkern festgelegt sind. Damit kontrollieren diese kernkodierten Proteine auch die Aktivität der Chloroplasten.

„Zu den Helical Repeat Proteinen gehört auch eine kürzlich neu entdeckte Proteinfamilie, die sogenannten Octotricopeptid Repeat Proteine (OPRs)“, sagt Alexandra-Viola Bohne aus der Arbeitsgruppe um Professor Jörg Nickelsen vom Biozentrum der LMU. In Grünalgen gibt es interessanterweise sehr viele Vertreter dieser neuen Familie, in den meisten Landpflanzen dagegen findet sich nur ein einziges derartiges Protein.

„Für uns war es deshalb sehr spannend, heraus zu finden was dieses Protein in Landpflanzen macht“, sagt Bohne, „dazu haben wir exemplarisch das OPR-Protein RAP aus der Modellpflanze Arabidopsis thaliana untersucht“.

Helfer der Proteinsynthese

Die Wissenschaftler untersuchten genetisch modifizierte Pflanzen, die kein RAP bilden konnten. Dabei zeigte sich, dass das Protein wichtig ist, damit die genetische Information der Chloroplasten in Proteine übersetzt werden kann. RAP ist an der Reifung der sogenannten 16S rRNA beteiligt, die bei diesem Prozess eine wichtige Rolle spielt.

„Der Verlust von RAP führt zu einer verringerten Proteinsynthese in den Chloroplasten und somit zu einer weniger effizienten Photosynthese“, sagt Nickelsen. „Darüber hinaus konnten wir zum ersten Mal experimentell bestätigen, dass die rRNA-Prozessierung im Nukleoid stattfindet, einem DNA-RNA-Protein Komplex im Chloroplasten. Bisher wurde dies lediglich vermutet“.

Interessanterweise gibt es auch Studien, die das RAP-Protein mit der Abwehr von Schädlingen in Zusammenhang bringen. Dabei führte eine verminderte RAP-Menge zu einer erhöhten Schädlingsresistenz der Pflanze. „Unsere Ergebnisse können daher möglicherweise auch helfen, neue Erkenntnisse zur Rolle der Chloroplasten bei der Schädlingsabwehr zu gewinnen“, so Bohne.
(Plant Cell 2014) göd

Publikation:
RAP, the Sole Octotricopeptide Repeat Protein in Arabidopsis, is Required for Chloroplast 16S rRNA Maturation
Laura Kleinknecht, Fei Wang, Roland Stübe, Katrin Philippar, Jörg Nickelsen and
Alexandra-Viola Bohne
Plant Cell 2014
Doi: 10.1105/tpc.114.122853

Kontakt:
Prof. Dr. Jörg Nickelsen
Phone: +49-89-218074773
Fax: +49-89-218074779
E-Mail: joerg.nickelsen@lrz.uni-muenchen.de

Luise Dirscherl | idw - Informationsdienst Wissenschaft
Weitere Informationen:
http://www.uni-muenchen.de/

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Wie Reize auf dem Weg ins Bewusstsein versickern
22.09.2017 | Rheinische Friedrich-Wilhelms-Universität Bonn

nachricht Lebendiges Gewebe aus dem Drucker
22.09.2017 | Universitätsklinikum Freiburg

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: The pyrenoid is a carbon-fixing liquid droplet

Plants and algae use the enzyme Rubisco to fix carbon dioxide, removing it from the atmosphere and converting it into biomass. Algae have figured out a way to increase the efficiency of carbon fixation. They gather most of their Rubisco into a ball-shaped microcompartment called the pyrenoid, which they flood with a high local concentration of carbon dioxide. A team of scientists at Princeton University, the Carnegie Institution for Science, Stanford University and the Max Plank Institute of Biochemistry have unravelled the mysteries of how the pyrenoid is assembled. These insights can help to engineer crops that remove more carbon dioxide from the atmosphere while producing more food.

A warming planet

Im Focus: Hochpräzise Verschaltung in der Hirnrinde

Es ist noch immer weitgehend unbekannt, wie die komplexen neuronalen Netzwerke im Gehirn aufgebaut sind. Insbesondere in der Hirnrinde der Säugetiere, wo Sehen, Denken und Orientierung berechnet werden, sind die Regeln, nach denen die Nervenzellen miteinander verschaltet sind, nur unzureichend erforscht. Wissenschaftler um Moritz Helmstaedter vom Max-Planck-Institut für Hirnforschung in Frankfurt am Main und Helene Schmidt vom Bernstein-Zentrum der Humboldt-Universität in Berlin haben nun in dem Teil der Großhirnrinde, der für die räumliche Orientierung zuständig ist, ein überraschend präzises Verschaltungsmuster der Nervenzellen entdeckt.

Wie die Forscher in Nature berichten (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005), haben die...

Im Focus: Highly precise wiring in the Cerebral Cortex

Our brains house extremely complex neuronal circuits, whose detailed structures are still largely unknown. This is especially true for the so-called cerebral cortex of mammals, where among other things vision, thoughts or spatial orientation are being computed. Here the rules by which nerve cells are connected to each other are only partly understood. A team of scientists around Moritz Helmstaedter at the Frankfiurt Max Planck Institute for Brain Research and Helene Schmidt (Humboldt University in Berlin) have now discovered a surprisingly precise nerve cell connectivity pattern in the part of the cerebral cortex that is responsible for orienting the individual animal or human in space.

The researchers report online in Nature (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005) that synapses in...

Im Focus: Tiny lasers from a gallery of whispers

New technique promises tunable laser devices

Whispering gallery mode (WGM) resonators are used to make tiny micro-lasers, sensors, switches, routers and other devices. These tiny structures rely on a...

Im Focus: Wundermaterial Graphen: Gewölbt wie das Polster eines Chesterfield-Sofas

Graphen besitzt extreme Eigenschaften und ist vielseitig verwendbar. Mit einem Trick lassen sich sogar die Spins im Graphen kontrollieren. Dies gelang einem HZB-Team schon vor einiger Zeit: Die Physiker haben dafür eine Lage Graphen auf einem Nickelsubstrat aufgebracht und Goldatome dazwischen eingeschleust. Im Fachblatt 2D Materials zeigen sie nun, warum dies sich derartig stark auf die Spins auswirkt. Graphen kommt so auch als Material für künftige Informationstechnologien infrage, die auf der Verarbeitung von Spins als Informationseinheiten basieren.

Graphen ist wohl die exotischste Form von Kohlenstoff: Alle Atome sind untereinander nur in der Ebene verbunden und bilden ein Netz mit sechseckigen Maschen,...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

11. BusinessForum21-Kongress „Aktives Schadenmanagement"

22.09.2017 | Veranstaltungen

Internationale Konferenz zum Biomining ab Sonntag in Freiberg

22.09.2017 | Veranstaltungen

Die Erde und ihre Bestandteile im Fokus

21.09.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

11. BusinessForum21-Kongress „Aktives Schadenmanagement"

22.09.2017 | Veranstaltungsnachrichten

DFG bewilligt drei neue Forschergruppen und eine neue Klinische Forschergruppe

22.09.2017 | Förderungen Preise

Lebendiges Gewebe aus dem Drucker

22.09.2017 | Biowissenschaften Chemie