Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Photopharmakologie - Lichtschranke für die Zellteilung

10.07.2015

LMU-Forschern ist es gelungen, einen Wirkstoff, der die Zellteilung hemmen kann, mit Lichtreizen steuerbar zu machen. Dies ist ein vielversprechender Ansatz für zielgerichtete und nebenwirkungsfreie Tumortherapien.

Zellen höherer Organismen sind von einem ausgeklügelten System röhrenförmiger Strukturen – sogenannter Mikrotubuli – durchzogen, die als Teil des Zellskeletts an vielen lebenswichtigen Prozessen beteiligt sind. Unter anderem sind die Mikrotubuli im zellulären Spindelapparat enthalten, der bei der Zellteilung die Chromosomen auf die Tochterzellen verteilt.


Mit Photostatinen behandelte Zellkulturen. Im Dunkeln (OFF) sind Mikrotubuli (grün) und Zellkerne (blau) intakt und als klar abgegrenzte Strukturen erkennbar. Durch die Beleuchtung mit Blaulicht (ON) werden die Mikrotubuli zerstört. Dadurch sterben die Zellen ab und die Zellkerne beginnen, sich zu zersetzen. Bild: Dirk Trauner / LMU

Wirkstoffe, die an den Mikrotubuli ansetzen, spielen daher sowohl für die Erforschung von Zellteilung und Embryonalentwicklung als auch als zellwachstum-hemmende Krebsmedikamente eine wichtige Rolle – verursachen aber oft starke Nebenwirkungen. Wissenschaftler um Professor Dirk Trauner und Dr. Oliver Thorn-Seshold vom Department Chemie der LMU haben nun einen entscheidenden Durchbruch geschafft, der zukünftig einen präziseren und schonenderen Einsatz derartiger Präparate ermöglichen soll:

„Wir haben in einen bekannten Mikrotubuli-Hemmer einen lichtsensitiven molekularen Schalter eingefügt, sodass der Wirkstoff nur nach Bestrahlung mit blauem Licht aktiv ist. Dadurch kann er erstmals gezielt nur am gewünschten Ort aktiviert – und auch wieder abgeschaltet werden, da die Reaktion reversibel ist“, sagt Thorn-Seshold. Trauner ergänzt: „Damit haben wir die Photopharmakologie auf eine weiteres hochdynamisches System angewandt, das allen Vielzellern gemeinsam ist: das Zytoskelett.“

In der Medizin gehören Wirkstoffe, die an den Mikrotubuli ansetzen, zu den wirkungsvollsten Chemotherapeutika. Allerdings entfalten diese Wirkstoffe ihre zellschädigende Wirkung im ganzen Körper, weshalb sie zu schweren Nebenwirkungen führen. „Unser Ziel war, einen Mikrotubuli-Hemmer so zu optimieren, dass er nur am gewünschten Einsatzort wirkt“, sagt Thorn-Seshold.

„Das haben wir erreicht, indem wir einen molekularen optischen Schalter für verschiedene chemische Abkömmlinge von Colchicin entwickelt haben“. Colchicin ist eine toxische chemische Verbindung, die aus der Herbstzeitlose stammt. Die mit optischem Schalter ausgestatteten Colchicin-Derivate bezeichnen die Wissenschaftler als Photostatine. Sie sind nur aktiv, wenn sie mit blauem Licht bestrahlt wurden, und können daher sehr präzise gesteuert werden – die Voraussetzung, um Tumorzellen gezielt und nebenwirkungsfrei zu bekämpfen.

Tumorzellen mit Licht stoppen

Im Zellversuch hat der Photoschalter seine Funktion bereits bewiesen: In mit blauem Licht bestrahlten Zellen hemmten Photostatine die Zellteilung 250-mal stärker als in Zellen, die im Dunkeln gehalten wurden. „Diese drastische licht-induzierte Aktivierung übersteigt alles, was bisher in der Photopharmakologie beobachtet wurde“, sagt Trauner.

„Möglich wurde sie, weil wir den optischen Schalter mit einer neuen Methode eingebaut haben, die eine besonders große Aktivitätssteigerung erlaubt“. Die Arbeit, an der neben Kollegen der Universität Lyon an der LMU auch die Arbeitsgruppen von Professor Angelika Vollmar und Professor Stefan Zahler sowie die Gruppe von PD Markus Rehberg beteiligt waren, ist in dem führenden Wissenschaftsjournal „Cell“ veröffentlicht worden.

Als mögliches zukünftiges Einsatzgebiet für Photostatine sehen die Wissenschaftler insbesondere örtlich begrenzte Tumore, die leicht mit einer Lichtquelle erreicht werden können, etwa Retinoblastome – die häufigsten Augentumore bei Kindern – oder Hautkrebs. „Lichtquellen werden heute schon in der Medizin häufig eingesetzt, etwa für Untersuchungen im Magen-Darm-Bereich. Da die LED-Technik derzeit eine rasante Entwicklung durchmacht, können wir uns auch vorstellen, dass es in Zukunft noch kleinere und hellere LEDs geben wird, die im Körper implantiert werden, etwa wie ein Herzschrittmacher“, sagt Thorn-Seshold. „Wir hoffen, dass sie sich dabei als vielversprechender Ansatz für die Entwicklung neuer Therapien bestätigen. Allerdings ist dies ein langwieriger Prozess, die Entwicklung und Durchführung der notwendigen Studien wird noch Jahre benötigen“.

Zellentwicklung im Sekundentakt schaltbar

Bereits jetzt sind die Photostatine aber auch ein vielversprechendes Werkzeug für die Zellbiologie: Mikrotubuli spielen als Bestandteil des Zellskeletts unter anderem bei der Zellteilung, dem intrazellulären Stofftransport und der Embryonalentwicklung eine essenzielle Rolle. Mit den Photostatinen können die Mikrotubuli erstmals räumlich und zeitlich sehr präzise gesteuert und wiederholt ein- und ausgeschaltet werden – und zwar innerhalb weniger als einer Sekunde.

Das schafft ganz neue Möglichkeiten, um die Funktion und räumliche Anordnung der Mikrotubuli zu erforschen. Gerade die Reversibilität der Hemmung ist in der Zellforschung ein besonderer Vorteil. „Wir konnten zum Beispiel die Entwicklung einer Zelle zu einem bestimmten Zeitpunkt anhalten und dann die Hemmung wieder ausschalten, um die Weiterentwicklung der Zelle zu beobachten. Dies könnte helfen, die Rolle bestimmter Vorläuferzellen während der Entwicklung aufzuklären“, erklärt Trauner.

Photopharmakologie ist noch ein relativ junges Forschungsgebiet, das zunehmend an Bedeutung gewinnen wird. In der Zukunft planen die Wissenschaftler, auch andere Moleküle, die an der Zellteilung und -dynamik beteiligt sind, mit Lichtschaltern auszustatten – die Mikrotubuli sind erst der Anfang.
(Cell 2015 Online am 9. Juli) göd

Publikation:
Photoswitchable inhibitors of microtubule dynamics optically control mitosis
and cell death
Malgorzata Borowiak, Wallis Nahaboo, Martin Reynders, Katharina Nekolla, Pierre Jalinot, Jens Hasserodt, Markus Rehberg, Marie DeLattre, Stefan Zahler, Angelika Vollmar, Dirk Trauner, Oliver Thorn-Seshold
Cell 2015
Doi:
http://dx.doi.org/10.1016/j.cell.2015.06.049

Kontakt:
Dirk Trauner
Professor of Chemical Biology
Department of Chemistry • University of Munich
Tel: +49 (0)89 2180-77800
Fax: +49 (0)89 2180-77972

Luise Dirscherl | idw - Informationsdienst Wissenschaft
Weitere Informationen:
http://www.uni-muenchen.de/

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Schnelle individualisierte Therapiewahl durch Sortierung von Biomolekülen und Zellen mit Licht
18.10.2017 | Fraunhofer-Institut für Lasertechnik ILT

nachricht Pflanzen können drei Eltern haben
18.10.2017 | Universität Bremen

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Schnelle individualisierte Therapiewahl durch Sortierung von Biomolekülen und Zellen mit Licht

Im Blut zirkulierende Biomoleküle und Zellen sind Träger diagnostischer Information, deren Analyse hochwirksame, individuelle Therapien ermöglichen. Um diese Information zu erschließen, haben Wissenschaftler des Fraunhofer-Instituts für Lasertechnik ILT ein Mikrochip-basiertes Diagnosegerät entwickelt: Der »AnaLighter« analysiert und sortiert klinisch relevante Biomoleküle und Zellen in einer Blutprobe mit Licht. Dadurch können Frühdiagnosen beispielsweise von Tumor- sowie Herz-Kreislauf-Erkrankungen gestellt und patientenindividuelle Therapien eingeleitet werden. Experten des Fraunhofer ILT stellen diese Technologie vom 13.–16. November auf der COMPAMED 2017 in Düsseldorf vor.

Der »AnaLighter« ist ein kompaktes Diagnosegerät zum Sortieren von Zellen und Biomolekülen. Sein technologischer Kern basiert auf einem optisch schaltbaren...

Im Focus: Neue Möglichkeiten für die Immuntherapie beim Lungenkrebs entdeckt

Eine gemeinsame Studie der Universität Bern und des Inselspitals Bern zeigt, dass spezielle Bindegewebszellen, die in normalen Blutgefässen die Wände abdichten, bei Lungenkrebs nicht mehr richtig funktionieren. Zusätzlich unterdrücken sie die immunologische Bekämpfung des Tumors. Die Resultate legen nahe, dass diese Zellen ein neues Ziel für die Immuntherapie gegen Lungenkarzinome sein könnten.

Lungenkarzinome sind die häufigste Krebsform weltweit. Jährlich werden 1.8 Millionen Neudiagnosen gestellt; und 2016 starben 1.6 Millionen Menschen an der...

Im Focus: Sicheres Bezahlen ohne Datenspur

Ob als Smartphone-App für die Fahrkarte im Nahverkehr, als Geldwertkarten für das Schwimmbad oder in Form einer Bonuskarte für den Supermarkt: Für viele gehören „elektronische Geldbörsen“ längst zum Alltag. Doch vielen Kunden ist nicht klar, dass sie mit der Nutzung dieser Angebote weitestgehend auf ihre Privatsphäre verzichten. Am Karlsruher Institut für Technologie (KIT) entsteht ein sicheres und anonymes System, das gleichzeitig Alltagstauglichkeit verspricht. Es wird nun auf der Konferenz ACM CCS 2017 in den USA vorgestellt.

Es ist vor allem das fehlende Problembewusstsein, das den Informatiker Andy Rupp von der Arbeitsgruppe „Kryptographie und Sicherheit“ am KIT immer wieder...

Im Focus: Neutron star merger directly observed for the first time

University of Maryland researchers contribute to historic detection of gravitational waves and light created by event

On August 17, 2017, at 12:41:04 UTC, scientists made the first direct observation of a merger between two neutron stars--the dense, collapsed cores that remain...

Im Focus: Breaking: the first light from two neutron stars merging

Seven new papers describe the first-ever detection of light from a gravitational wave source. The event, caused by two neutron stars colliding and merging together, was dubbed GW170817 because it sent ripples through space-time that reached Earth on 2017 August 17. Around the world, hundreds of excited astronomers mobilized quickly and were able to observe the event using numerous telescopes, providing a wealth of new data.

Previous detections of gravitational waves have all involved the merger of two black holes, a feat that won the 2017 Nobel Prize in Physics earlier this month....

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Mobilität 4.0: Konferenz an der Jacobs University

18.10.2017 | Veranstaltungen

Smart MES 2017: die Fertigung der Zukunft

18.10.2017 | Veranstaltungen

DFG unterstützt Kongresse und Tagungen - Dezember 2017

17.10.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Schnelle individualisierte Therapiewahl durch Sortierung von Biomolekülen und Zellen mit Licht

18.10.2017 | Biowissenschaften Chemie

Biokunststoffe könnten auch in Traktoren die Richtung angeben

18.10.2017 | Messenachrichten

»ILIGHTS«-Studie gestartet: Licht soll Wohlbefinden von Schichtarbeitern verbessern

18.10.2017 | Energie und Elektrotechnik