Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Photon trifft Molekül

28.02.2012
Einem Forschungsteam der ETH Zürich und des Max Planck Instituts Erlangen ist es erstmals gelungen, die Wechselwirkung von einem einzigen Lichtpartikel mit einem Einzelmolekül zu beobachten. Damit legen sie die Grundlage für Anwendungen in der Kommunikation mit Quanten oder für optische Rechner.

Radiohören ist selbstverständlich geworden: Ein Sender strahlt über Radiowellen Informationen aus, die der Hörer zu Hause mit seinem Radio empfängt, wenn er die richtige Frequenz eingestellt hat. ETH-Physiker haben nun dieses Modell in die Welt der Quanten transferiert. In dem an der ETH realisierten Experiment haben Forscher um Vahid Sandoghdar, vormals Professor für Physikalische Chemie der ETH Zürich, und sein Postdoc Yves Rezus nachgewiesen, wie ein Einzelmolekül einzelne Photonen direkt absorbiert. Das Resultat des Experiments ist soeben in der Fachzeitschrift Physical Review Letters veröffentlicht worden.


Das Experiment aus der Perspektive eines Künstlers: Ein Molekül sendet einen Strom von einzelnen Photonen zu einem zweiten, weit entfernten Molekül. Bild: Robert Lettow

Die Wissenschaftler haben es geschafft, von einem Molekül aus einen Strom einzelner Photonen zu erzeugen und abzusenden. Als Empfänger der Lichtpartikel diente ein mehrere Meter von der Sendestation entferntes Einzelmolekül. Damit konnten die Forscher ein lang erdachtes Gedankenexperiment, nämlich die Wechselwirkung von Licht und Materie, der Physik umsetzen.

Gezielte Anregung illusorisch

In den vergangenen zwanzig Jahren haben verschiedene Wissenschaftler gezeigt, dass sie Einzelmoleküle detektieren oder Photonen kontrolliert erzeugen können. Die gezielte Anregung eines Moleküls durch einzelne Photonen war aber bisher nicht machbar. Die Wahrscheinlichkeit, dass das Molekül ein Photon tatsächlich «sieht» und absorbiert, ist nämlich sehr klein. In bisherigen Experimenten haben die Forscher deshalb pro Sekunde Tausende Milliarden von Photonen auf ein Molekül gerichtet, um überhaupt ein Signal von diesem zu empfangen.

Eine der vielen Schwierigkeiten, die das Team auf dem Weg zu diesem Experiment überwinden konnten, ist die Realisierung einer geeigneten Einzelphotonenquelle mit der richtigen Frequenz und Bandbreite. Da es solche nicht kommerziell erhältlich sind, mussten sie erst eine geeignete Quelle bauen. Dabei haben sie ausgenutzt, dass ein Molekül Licht «schlucken» und dadurch Energie aufnehmen kann, also durch die Absorption eines Photons in den angeregten Zustand übergeht. Nach ein paar Nanosekunden zerfällt dieser Zustand wieder, das Molekül geht in den Grundzustand zurück und gibt dabei genau ein Photon ab.

Experiment nahe absolutem Nullpunkt

In ihrem Experiment kühlten die Physiker zwei Proben mit fluoreszierenden Molekülen, die mehrere Meter voneinander entfernt waren, auf etwa -272 °C ab. In jeder Probe identifizierten die Wissenschaftler schliesslich ein einzelnes geeignetes Molekül.

Um einen Strom räumlich getrennter einzelner Photonen zu erzeugen, regten sie das Molekül in der Quellen-Probe mit einem Laser an. Die entstehenden Lichtteilchen wurden aufgesammelt und stark auf das Molekül in der «Ziel»-Probe ausgerichtet. Um zu garantieren, dass das Molekül in dieser Probe das Photon «sieht», mussten die Forscher dafür sorgen, dass die Frequenz des Photons der Übergangsfrequenz des zweiten Moleküls entspricht. Ausserdem mussten sie sicherstellen, dass ein hoher Anteil der Einzelphotonen mit dem Ziel-Molekül interagiert.

Das Problem: Ein Molekül ist nur etwa ein Nanometer gross, also 100'000 Mal kleiner als der Durchmesser eines menschlichen Haares. Licht kann aber aufgrund von Beugung nur auf einige hundert Nanometer fokussiert werden. Für ein Licht von beliebiger Frequenz bedeutet das, dass der Grossteil der Photonen am Molekül vorbeifliegt, ohne dass das Molekül damit interagiert. Haben die einfallenden Photonen allerdings genau die gleiche Frequenz wie der quantenmechanische Übergang des Moleküls, dann wirkt dieses viel grösser. Das Molekül wirkt wie eine Antenne, die Licht aus ihrer Umgebung einsammelt.

Kommunikation von quantenoptischen Antennen

«Die Resultate sind das erste Beispiel für eine Kommunikation zweier quantenoptischer Antennen über grosse Distanzen», sagt Vahid Sandoghdar, «wenn man so will, ist dieses Experiment eine Analogie zu den von Hertz und Marconi im 19. Jahrhundert durchgeführten Demonstrationen mit Radioantennen.» Die beiden frühen Wissenschaftler verwendeten Dipol-Oszillatoren als Sender- und Empfängerantennen. In dem jetzt durchgeführten Experiment ahmen die zwei Moleküle dieses Szenario bei optischen Frequenzen nach. Hier verbindet allerdings ein Strom von einzelnen Photonen die beiden Antennen.

«Die Ergebnisse ebnen den Weg zu weiteren aufregenden Experimenten, in denen einzelne Photonen als Träger von Quantenformation mit Hilfe von einzelnen Atomen oder Molekülen weiter verarbeitet werden», sagt der frühere ETH-Professor. Die Experimente wurden an der ETH Zürich durchgeführt. Seine Gruppe arbeitet seit 2011 am neugegründete Max Planck Institut für die Physik des Lichts nach Erlangen.

Bis heute ist es eine Herausforderung, in die Welt der Quantenmechanik einzudringen. Dennoch hat die Forschung ein reges Interesse daran, deren Gesetze besser zu verstehen und nutzen zu können, da die Quantenmechanik effizientere und neuartige Möglichkeiten der Informationsverarbeitung verspricht. In dieser Welt agieren Atome und Moleküle als so genannte Quanten-Bits, verbunden durch einzelne Photonen.

Literaturhinweis: Rezus YLA, Walt SG, Lettow R, Renn A, Zumofen G, Götzinger S and Sandoghdar V: Single-Photon Spectroscopy of a Single Molecule. Physical Review Letters, Published Online 27th February 2012.

Kontakt: vahid.sandoghdar@mpl.mpg.de

Media Relations | idw
Weitere Informationen:
http://www.mpl.mpg.de
http://www.ethz.ch

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Neue Arten in der Nordsee-Kita
05.12.2016 | Senckenberg Forschungsinstitut und Naturmuseen

nachricht Alter beeinflusst den Mikronährstoffgehalt im Blut
05.12.2016 | Deutsches Institut für Ernährungsforschung Potsdam-Rehbrücke

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Greifswalder Forscher dringen mit superauflösendem Mikroskop in zellulären Mikrokosmos ein

Das Institut für Anatomie und Zellbiologie weiht am Montag, 05.12.2016, mit einem wissenschaftlichen Symposium das erste Superresolution-Mikroskop in Greifswald ein. Das Forschungsmikroskop wurde von der Deutschen Forschungsgemeinschaft (DFG) und dem Land Mecklenburg-Vorpommern finanziert. Nun können die Greifswalder Wissenschaftler Strukturen bis zu einer Größe von einigen Millionstel Millimetern mittels Laserlicht sichtbar machen.

Weit über hundert Jahre lang galt die von Ernst Abbe 1873 publizierte Theorie zur Auflösungsgrenze von Lichtmikroskopen als ein in Stein gemeißeltes Gesetz....

Im Focus: Durchbruch in der Diabetesforschung: Pankreaszellen produzieren Insulin durch Malariamedikament

Artemisinine, eine zugelassene Wirkstoffgruppe gegen Malaria, wandelt Glukagon-produzierende Alpha-Zellen der Bauchspeicheldrüse (Pankreas) in insulinproduzierende Zellen um – genau die Zellen, die bei Typ-1-Diabetes geschädigt sind. Das haben Forscher des CeMM Forschungszentrum für Molekulare Medizin der Österreichischen Akademie der Wissenschaften im Rahmen einer internationalen Zusammenarbeit mit modernsten Einzelzell-Analysen herausgefunden. Ihre bahnbrechenden Ergebnisse werden in Cell publiziert und liefern eine vielversprechende Grundlage für neue Therapien gegen Typ-1 Diabetes.

Seit einigen Jahren hatten sich Forscher an diesem Kunstgriff versucht, der eine simple und elegante Heilung des Typ-1 Diabetes versprach: Die vom eigenen...

Im Focus: Makromoleküle: Mit Licht zu Präzisionspolymeren

Chemikern am Karlsruher Institut für Technologie (KIT) ist es gelungen, den Aufbau von Präzisionspolymeren durch lichtgetriebene chemische Reaktionen gezielt zu steuern. Das Verfahren ermöglicht die genaue, geplante Platzierung der Kettengliedern, den Monomeren, entlang von Polymerketten einheitlicher Länge. Die präzise aufgebauten Makromoleküle bilden festgelegte Eigenschaften aus und eignen sich möglicherweise als Informationsspeicher oder synthetische Biomoleküle. Über die neuartige Synthesereaktion berichten die Wissenschaftler nun in der Open Access Publikation Nature Communications. (DOI: 10.1038/NCOMMS13672)

Chemische Reaktionen lassen sich durch Einwirken von Licht bei Zimmertemperatur auslösen. Die Forscher am KIT nutzen diesen Effekt, um unter Licht die...

Im Focus: Neuer Sensor: Was im Inneren von Schneelawinen vor sich geht

Ein neuer Radarsensor erlaubt Einblicke in die inneren Vorgänge von Schneelawinen. Entwickelt haben ihn Ingenieure der Ruhr-Universität Bochum (RUB) um Dr. Christoph Baer und Timo Jaeschke gemeinsam mit Kollegen aus Innsbruck und Davos. Das Messsystem ist bereits an einem Testhang im Wallis installiert, wo das Schweizer Institut für Schnee- und Lawinenforschung im Winter 2016/17 Messungen damit durchführen möchte.

Die erhobenen Daten sollen in Simulationen einfließen, die das komplexe Geschehen im Inneren von Lawinen detailliert nachbilden. „Was genau passiert, wenn sich...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Von „Coopetition“ bis „Digitale Union“ – Die Fertigungsindustrien im digitalen Wandel

02.12.2016 | Veranstaltungen

Experten diskutieren Perspektiven schrumpfender Regionen

01.12.2016 | Veranstaltungen

Die Perspektiven der Genom-Editierung in der Landwirtschaft

01.12.2016 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Forscher finden «Krebssignatur» in Proteinen

05.12.2016 | Biowissenschaften Chemie

Wichtiger Prozess für Wolkenbildung aus Gasen entschlüsselt

05.12.2016 | Geowissenschaften

Frühwarnsignale für Seen halten nicht, was sie versprechen

05.12.2016 | Ökologie Umwelt- Naturschutz