Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Phänotyp auf Knopfdruck

26.09.2016

Wissenschaftler des Leibniz-Instituts für Pflanzenbiochemie (IPB) in Halle haben eine Methode entwickelt, mit der es möglich ist, gewünschte Proteine im lebenden Organismus je nach Bedarf anzureichern oder abzubauen. Dafür haben die Forscher um Dr. Nico Dissmeyer gemeinsam mit Wissenschaftlern aus Köln und Zürich einen molekularen Schalter entwickelt, der durch Temperaturänderung aktiviert werden kann.

Mit diesem Schalter sind Pflanzen in der Lage, bei niedrigen Umgebungstemperaturen, das gewünschte Protein in großer Menge zu produzieren, während nach einer moderaten Temperaturerhöhung, innerhalb von wenigen Stunden ein kompletter Abbau des Proteins erfolgt. Erstmals gelingt es damit, das äußere Erscheinungsbild von Pflanzen – den Phänotyp – durch einen zeitlich begrenzbaren Eingriff zu verändern.


Trichom auf einem Arabidopsisblatt

Foto: Nico Dissmeyer, IPB

Das Verfahren ist jedoch nicht nur bei verschiedenen Pflanzen anwendbar, sondern wurde auch in tierischen Zellkulturen, der Bäckerhefe und lebenden Fruchtfliegen erfolgreich getestet und eingesetzt. Vielfältige Anwendungsmöglichkeiten in der Grundlagenforschung und in biotechnologischen Produktionsverfahren sind denkbar. Die Methode wurde jetzt in der Zeitschrift Nature Communications publiziert.

Grundlage dieser Temperaturshiftmethode bildet die natürliche Proteinentsorgungsmaschinerie, (das Proteasom), die von der Bäckerhefe bis zum Menschen in jeder lebenden Zelle vorkommt. Alle Eiweiße, und vor allem jene Proteine, die als Enzyme alle Stoffwechselvorgänge und damit wichtige physiologische Prozesse wie Atmung, Verdauung, Entwicklung und Immunabwehr steuern, müssen stets am richtigen Ort, zur richtigen Zeit und mit der richtigen Aktivität wirken. Fehlerhafte Enzyme, die zu stark, zu wenig, zu lange oder gar nicht aktiv sind, können schwerwiegende Krankheitsfolgen für den Organismus haben. Sie werden deshalb innerhalb der Zellen als abnorm erkannt und abgebaut.

Diesen natürlichen Vorgang nutzten die Hallenser Wissenschaftler, um Proteine ihrer Wahl, je nach Umgebungstemperatur, in der Zelle anzureichern oder abzubauen. Dafür wurden künstliche DNA-Konstrukte, die aus zwei hintereinander geschalteten Genen bestanden, in die Pflanzenzellen geschleust. Das erste Gen codierte für ein temperaturlabiles Protein, das bei Erhöhung der Umgebungstemperatur eine fehlerhafte räumliche Struktur ausbildete.

Das zweite Gen enthielt die Information für das jeweilige Wunschprotein, das man in den Zellen angereichert haben wollte. Diese beiden hintereinander geschalteten Gene bildeten die Grundlage für die zellinterne Biosynthese eines Fusionsproteins, das sich bei niedrigen Umgebungstemperaturen von 13°C in der Zelle anreicherte und seine Funktion korrekt ausübte. Nach einem Temperaturshift auf 29°C veränderte der temperaturlabile Teil des Fusionsproteins seine Struktur derart, dass es vom Proteasom als abnorm erkannt und abgebaut wurde.

Mit ihm auch das Wunschprotein, als fester Bestandteil des Fusionsproteins. Der temperaturlabile Teil des Fusionsproteins dient also in diesem System als molekularer Temperaturschalter. Mit einer stufenweisen oder zeitlich begrenzten Temperatur- erhöhung konnte auf diese Weise sogar eine abgestufte Herunterregulierung der Wunschproteinmenge erzielt werden. Zudem war die Veränderung reversibel; nach einem erneuten Absenken der Umgebungstemperatur wurde das Wunschprotein wieder in den Zellen angereichert.

Dissmeyer und Kollegen haben die Temperaturshiftmethode mit verschiedenen Wunschproteinen in verschiedenen Organismen erfolgreich getestet. In der Ackerschmalwand (Arabidopsis thaliana) konnten sie auf diese Weise die Entwicklung von kleinen, einzelligen Haaren auf der Blattoberfläche (Trichome) beeinflussen. Dafür wurde eine Mutante, die generell keine Trichome ausbildet, mit dem Entwicklungsgen für die Trichombildung in Kombination mit dem molekularen Schaltergen versehen. Im Ergebnis bildeten die Pflanzen bei 13°C Umgebungstemperatur wieder Trichome auf ihren Blättern, während bei 29°C das Trichomentwicklungsprotein inaktiviert wurde und folglich alle Blätter, genau wie in der fehlerhaften Nullmutante, glatt und haarlos waren.

Besonders in der Trichombildung nach Wunsch liegt ein großes Potential für die Anwendung des Temperaturshifts in biotechnologischen Produktionsprozessen. Bestimmte Pflanzen bilden Trichome auf ihren Blättern aus, die als Drüsenhaare fungieren. Diese glandulären Trichome produzieren und speichern pflanzliche Stoffwechselprodukte, wie ätherische Öle oder Abwehrstoffe gegen Schadinsekten. Sie bilden ein in sich geschlossenes Zellsystem, das mit dem Gefäßsystem der Pflanze nicht verbunden ist.

Deshalb werden in den Drüsenhaaren oft auch für die Pflanze toxische Schwermetalle und andere schädliche Abbauprodukte gespeichert und endgelagert. Mit der Temperaturshiftmethode können die Trichome als Mikroreaktoren für die gezielt steuerbare Produktion von für die Pflanze toxischen Proteinen oder anderer Wirkstoffe nutzbar gemacht werden. So wäre es beispielsweise möglich, glanduläre Trichome als Minifabriken für Medikamente zu nutzen. Tabakpflanzen mit ihren großen Blättern und entsprechend vielen Drüsenhaaren wären für dieses Verfahren besonders geeignet.

Nico Dissmeyer leitet seit 2011 die unabhängige Nachwuchsgruppe Proteinerkennung und Abbau am Leibniz-Institut für Pflanzenbiochemie. Seit Ende 2011 wird er als Nachwuchsgruppenleiter des „WissenschaftsCampus‘ Halle – Pflanzenbasierte Bioökonomie“ vom Land Sachsen-Anhalt, der Leibniz-Gemeinschaft, der EU sowie der Deutschen Forschungsgemeinschaft finanziert. Mit seiner Temperaturshiftmethode stellt seine Arbeitsgruppe allen Bereichen der Lebenswissenschaften ein starkes molekulares Werkzeug zur Verfügung, um bestimmte Eigenschaften von Organismen schnell, nuanciert und reversibel zu verändern.

Originalpublikation:
Frederik Faden, Thomas Ramezani, Stefan Mielke, Isabel Almudi, Knud Nairz, Marceli S. Froehlich, Jörg Höckendorff, Wolfgang Brandt, Wolfgang Hoehenwarter, R. Jürgen Dohmen, Arp Schnittger & Nico Dissmeyer, Phenotypes on demand via switchable target protein degradation in multicellular organisms. Nature Communications 7: 12202, doi:10.1038/ncomms12202
http://www.nature.com/ncomms/2016/160721/ncomms12202/full/ncomms12202.html

Weitere Informationen:

http://Ansprechpartner:
http://Dr. Nico Dissmeyer
http://Leibniz-Institut für Pflanzenbiochemie
http://Tel.: 0345 5582 1710
http://nico.dissmeyer@ipb-halle.de
http://www.dissmeyerlab.org

Dipl.Biol. Sylvia Pieplow | idw - Informationsdienst Wissenschaft

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Pflanzlicher Wirkstoff lässt Wimpern wachsen
09.12.2016 | Fraunhofer-Institut für Angewandte Polymerforschung IAP

nachricht Wolkenbildung: Wie Feldspat als Gefrierkeim wirkt
09.12.2016 | Karlsruher Institut für Technologie

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Elektronenautobahn im Kristall

Physiker der Universität Würzburg haben an einer bestimmten Form topologischer Isolatoren eine überraschende Entdeckung gemacht. Die Erklärung für den Effekt findet sich in der Struktur der verwendeten Materialien. Ihre Arbeit haben die Forscher jetzt in Science veröffentlicht.

Sie sind das derzeit „heißeste Eisen“ der Physik, wie die Neue Zürcher Zeitung schreibt: topologische Isolatoren. Ihre Bedeutung wurde erst vor wenigen Wochen...

Im Focus: Electron highway inside crystal

Physicists of the University of Würzburg have made an astonishing discovery in a specific type of topological insulators. The effect is due to the structure of the materials used. The researchers have now published their work in the journal Science.

Topological insulators are currently the hot topic in physics according to the newspaper Neue Zürcher Zeitung. Only a few weeks ago, their importance was...

Im Focus: Rätsel um Mott-Isolatoren gelöst

Universelles Verhalten am Mott-Metall-Isolator-Übergang aufgedeckt

Die Ursache für den 1937 von Sir Nevill Francis Mott vorhergesagten Metall-Isolator-Übergang basiert auf der gegenseitigen Abstoßung der gleichnamig geladenen...

Im Focus: Poröse kristalline Materialien: TU Graz-Forscher zeigt Methode zum gezielten Wachstum

Mikroporöse Kristalle (MOFs) bergen große Potentiale für die funktionalen Materialien der Zukunft. Paolo Falcaro von der TU Graz et al zeigen in Nature Materials, wie man MOFs gezielt im großen Maßstab wachsen lässt.

„Metal-organic frameworks“ (MOFs) genannte poröse Kristalle bestehen aus metallischen Knotenpunkten mit organischen Molekülen als Verbindungselemente. Dank...

Im Focus: Gravitationswellen als Sensor für Dunkle Materie

Die mit der Entdeckung von Gravitationswellen entstandene neue Disziplin der Gravitationswellen-Astronomie bekommt eine weitere Aufgabe: die Suche nach Dunkler Materie. Diese könnte aus einem Bose-Einstein-Kondensat sehr leichter Teilchen bestehen. Wie Rechnungen zeigen, würden Gravitationswellen gebremst, wenn sie durch derartige Dunkle Materie laufen. Dies führt zu einer Verspätung von Gravitationswellen relativ zu Licht, die bereits mit den heutigen Detektoren messbar sein sollte.

Im Universum muss es gut fünfmal mehr unsichtbare als sichtbare Materie geben. Woraus diese Dunkle Materie besteht, ist immer noch unbekannt. Die...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Firmen- und Forschungsnetzwerk Munitect tagt am IOW

08.12.2016 | Veranstaltungen

NRW Nano-Konferenz in Münster

07.12.2016 | Veranstaltungen

Wie aus reinen Daten ein verständliches Bild entsteht

05.12.2016 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Hochgenaue Versuchsstände für dynamisch belastete Komponenten – Workshop zeigt Potenzial auf

09.12.2016 | Seminare Workshops

Ein Nano-Kreisverkehr für Licht

09.12.2016 | Physik Astronomie

Pflanzlicher Wirkstoff lässt Wimpern wachsen

09.12.2016 | Biowissenschaften Chemie