Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Pflanzenvielfalt von Wäldern aus der Luft abbilden

13.11.2017

Produktivität und Stabilität von Waldökosystemen hängen stark von der funktionalen Vielfalt der Pflanzengemeinschaften ab. UZH-Forschenden gelang es, die Pflanzenvielfalt von Wäldern durch Fernerkundung mit Flugzeugen in verschiedenen Massstäben zu messen und zu kartieren – von einzelnen Bäumen bis hin zu ganzen Artengemeinschaften. Die neue Methode ebnet den Weg, um zukünftig die globale Pflanzendiversität aus der Luft und aus dem All zu überwachen.

Ökologische Studien zeigen, dass die Pflanzenvielfalt zentral ist für das Funktionieren von Ökosystemen. Wälder mit einer höheren funktionalen Vielfalt – verschiedene Pflanzenarten übernehmen in einem Ökosystem unterschiedliche Funktionen – sind in der Regel über lange Zeiträume ertragreicher und stabiler als weniger artenreiche Wälder.


Diversität der physiologischen Merkmale des Waldes (Blattgehalt an Chlorophyll, Karotinoiden und Wasser) dargestellt als funktionale Reichhaltigkeit auf Flächen mit 90 m Radius.

UZH


Räumliche Zusammensetzung der physiologischen Merkmale des Waldes (Blattgehalt an Chlorophyll, Karotinoiden und Wasser). Die Farbe entspricht den relativen Merkmalsanteilen pro Pixel (6x6 m).

UZH

Zudem nutzen vielfältige Pflanzengemeinschaften die Ressourcen stärker und effizienter. Solche Ökosysteme sind produktiver und stabiler und bewältigen Umweltveränderungen besser – eine Art «Versicherungseffekt» der Biodiversität. Sie sind auch weniger anfällig gegenüber Krankheiten, Insektenbefall, Feuer und Stürmen.

Ganze Waldökosysteme aus der Luft untersuchen

Die funktionale Vielfalt von Pflanzen lässt sich direkt messen, indem ausgewählte morphologische und physiologische Merkmale eines Waldes aus der Luft bestimmt werden. Früher waren dazu sehr arbeitsintensive Feldarbeiten am Boden erforderlich. Diese beschränkten sich daher auf wenige messbare Merkmale grösserer Parzellen bzw. auf viele Merkmale von sehr kleinen Parzellen oder einzelnen Bäumen.

Forschende der UZH und des California Institute of Technology / NASA Jet Propulsion Laboratory haben nun eine neue Methode entwickelt, um die Vielfalt von Wäldern mittels Fernerkundung von kleinen bis zu grossen Massstäben abzubilden. Das Verfahren funktioniert unabhängig von zuvor ermittelten Vegetationseinheiten oder Arteninformationen, und ohne die Messwerte mit jenen am Boden abgleichen zu müssen.

Getestet wurde das Verfahren auf dem Gebiet der Lägern, ein gemässigtes Mischwald-Ökosystem in der Nähe von Zürich, Schweiz. «Mit Fernerkundung haben wir die einzigartige Möglichkeit ganze Waldökosysteme zu untersuchen. Indem wir von oben auf die Blätter der Baumkronen blicken, können wir ihre funktionalen Merkmale kontinuierlich über sehr grosse Flächen kartieren», sagt Michael Schaepman, Professor für Fernerkundung am Geografischen Institut.

Funktionale Merkmale zeigen Aktivität und Gesundheit der Bäume

Mit Hilfe eines Lasers tasteten die Wissenschaftler aus der Luft morphologische Merkmale des Waldes wie die Höhe der Baumkronen, die Laub- und Astdichte ab. Diese Messungen zeigen, wie das Sonnenlicht von der Architektur der Baumkronen aufgenommen werden kann, um Kohlendioxid aus der Luft in organischen Kohlenstoff umzuwandeln und für das Wachstum zu nutzen. Ist die Struktur eines Baumkronendachs vielfältiger, verteilt sich das Licht besser zwischen den vertikalen Schichten und den einzelnen Baumkronen, was eine effizientere Ausnutzung des gesamten Lichteinfalls ermöglicht.

Weiter analysierten die Wissenschaftler mit einem Spektrometer von einem Flugzeug aus auch biochemische Merkmale des Waldes. Aus der Art, wie Blätter das Licht in diversen Wellenlängen reflektieren, lassen sich physiologische Eigenschaften der Blätter wie der Gehalt an Pigmenten (Chlorophylle, Carotinoide) und an Wasser ableiten. «Diese physiologischen Merkmale geben Aufschluss über Aktivität und Gesundheitszustand der Bäume. Wir sehen etwa, ob ein Baum unter Wasserstress leidet, wie dieser reagiert oder sich an die Umwelt anpasst», ergänzt Schaepman.

Diversitätsmuster stimmen mit Topografie und Boden überein

Zur Validierung ihrer Methode verglichen die Forschenden ihre Ergebnisse mit Feldmessungen an einzelnen Blättern, mit Bestandesdaten sowie mit Werten aus Datenbanken, die funktionale Merkmale enthalten. Mit Hilfe von Computermodellen konnten sie die Diversitätsmuster der morphologischen und physiologischen Merkmale in diversen Massstäben bestimmen – von der lokalen Vielfalt zwischen einzelnen Bäumen bis hin zu grossflächigen Mustern von ganzen Pflanzengemeinschaften.

Das Team fand eine grosse Übereinstimmung der gemessenen Diversitätsmuster mit Umweltfaktoren wie Bodeneigenschaften und Topografie. So zeigte sich etwa eine geringere Diversität unter den raueren Umweltbedingungen entlang des Berggrats, wo sich die Bäume an die trockenen, steilen, flachen und felsigen Böden angepasst haben.

Potenzial zur Messung aus dem Weltraum

«Dank Fernerkundung können wir nun die Vielfalt von Wäldern messen und überwachen, so dass wir Veränderungen im grossen Massstab beobachten und räumliche Informationen für Naturschutz- und Klimaschutzstrategien bereitstellen können», betont Michael Schaepman. Da die Methodik nur durch die Verfügbarkeit fortschrittlicher Sensoren begrenzt ist, ebnet diese Arbeit den Weg für zukünftige Flug- und Satellitenmissionen zur Überwachung der globalen Pflanzenvielfalt aus der Luft und aus dem Weltraum.

Literatur:
Fabian D. Schneider, Felix Morsdorf, Bernhard Schmid, Owen L. Petchey, Andreas Hueni, David S. Schimel, Michael E. Schaepman. Mapping functional diversity from remotely sensed morphological and physiological forest traits. Nature Communications. 13 November 2017. DOI: 10.1038/s41467-017-01530-3

Kontakt:
Prof. Dr. Michael Schaepman
Remote Sensing Laboratories
Geografisches Institut
Universität Zürich
Tel. +41 44 635 51 60
E-Mail: michael.schaepman@geo.uzh.ch

Weitere Informationen:

http://www.media.uzh.ch/de/medienmitteilungen/2017/Biodiversitaets-Fernerkundung...

Kurt Bodenmüller | Universität Zürich

Weitere Nachrichten aus der Kategorie Agrar- Forstwissenschaften:

nachricht Biologische Vielfalt von grünlanddominierten Kulturlandschaften unter der Lupe
20.04.2018 | Hochschule Weihenstephan-Triesdorf

nachricht Nitrat-Problem der Landwirtschaft in Luft auflösen
29.03.2018 | Karlsruher Institut für Technologie

Alle Nachrichten aus der Kategorie: Agrar- Forstwissenschaften >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Software mit Grips

Ein computergestütztes Netzwerk zeigt, wie die Ionenkanäle in der Membran von Nervenzellen so verschiedenartige Fähigkeiten wie Kurzzeitgedächtnis und Hirnwellen steuern können

Nervenzellen, die auch dann aktiv sind, wenn der auslösende Reiz verstummt ist, sind die Grundlage für ein Kurzzeitgedächtnis. Durch rhythmisch aktive...

Im Focus: Der komplette Zellatlas und Stammbaum eines unsterblichen Plattwurms

Von einer einzigen Stammzelle zur Vielzahl hochdifferenzierter Körperzellen: Den vollständigen Stammbaum eines ausgewachsenen Organismus haben Wissenschaftlerinnen und Wissenschaftler aus Berlin und München in „Science“ publiziert. Entscheidend war der kombinierte Einsatz von RNA- und computerbasierten Technologien.

Wie werden aus einheitlichen Stammzellen komplexe Körperzellen mit sehr unterschiedlichen Funktionen? Die Differenzierung von Stammzellen in verschiedenste...

Im Focus: Spider silk key to new bone-fixing composite

University of Connecticut researchers have created a biodegradable composite made of silk fibers that can be used to repair broken load-bearing bones without the complications sometimes presented by other materials.

Repairing major load-bearing bones such as those in the leg can be a long and uncomfortable process.

Im Focus: Verbesserte Stabilität von Kunststoff-Leuchtdioden

Polymer-Leuchtdioden (PLEDs) sind attraktiv für den Einsatz in großflächigen Displays und Lichtpanelen, aber ihre begrenzte Stabilität verhindert die Kommerzialisierung. Wissenschaftler aus dem Max-Planck-Institut für Polymerforschung (MPIP) in Mainz haben jetzt die Ursachen der Instabilität aufgedeckt.

Bildschirme und Smartphones, die gerollt und hochgeklappt werden können, sind Anwendungen, die in Zukunft durch die Entwicklung von polymerbasierten...

Im Focus: Writing and deleting magnets with lasers

Study published in the journal ACS Applied Materials & Interfaces is the outcome of an international effort that included teams from Dresden and Berlin in Germany, and the US.

Scientists at the Helmholtz-Zentrum Dresden-Rossendorf (HZDR) together with colleagues from the Helmholtz-Zentrum Berlin (HZB) and the University of Virginia...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

Internationale Konferenz zur Digitalisierung

19.04.2018 | Veranstaltungen

124. Internistenkongress in Mannheim: Internisten rücken Altersmedizin in den Fokus

19.04.2018 | Veranstaltungen

DFG unterstützt Kongresse und Tagungen - Juni 2018

17.04.2018 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Grösster Elektrolaster der Welt nimmt Arbeit auf

20.04.2018 | Interdisziplinäre Forschung

Bilder magnetischer Strukturen auf der Nano-Skala

20.04.2018 | Physik Astronomie

Kieler Forschende entschlüsseln neuen Baustein in der Entwicklung des globalen Klimas

20.04.2018 | Geowissenschaften

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics