Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Pflanzensamen schützen ihr Erbgut vor Austrocknung

01.12.2011
Wenn Samen der Ackerschmalwand Arabidopsis thaliana reifen, schrumpfen ihre Zellkerne und das Chromatin kondensiert

Die Samen von Pflanzen sind ein besonders biologisches System: Sie ruhen mit einem deutlich reduzierten Stoffwechsel, womit sie harschen Umweltbedingungen lange Zeit widerstehen können. In reifenden Samen beläuft sich der Wassergehalt auf unter zehn Prozent.


Kern eines Pflanzensamens im Ruhestadium (links) und nach dem Keimen (rechts). Im kleineren Kern ist die DNA (blau) dichter gepackt als im größeren Kern (grün: methylierte DNA). © MPI. Pflanzenzüchtungsforschung

Forscher des Max-Planck-Instituts für Pflanzenzüchtungsforschung in Köln haben nun herausgefunden, dass das Erbgut kompakter wird und die Zellkerne der Samenzellen schrumpfen, wenn die Reifung der Samen beginnt. Dadurch schützen die Samen ihre Erbsubstanz wahrscheinlich vor Austrocknung.

Mit der Entwicklung von ruhenden Samen sind Pflanzen bestens auf wechselnde Umweltbedingungen vorbereitet. So können beispielsweise im Herbst gereifte Samen problemlos den harschen Bedingungen des Winters trotzen. Doch treffen die Samen im Frühjahr auf angenehme äußere Verhältnisse, keimen sie und fahren ihren mit halber Kraft laufenden Stoffwechsel wieder hoch. Bei archäologischen Ausgrabungen wurden sogar Samen gefunden, die einige Tausend Jahre überdauert haben und noch immer gedeihen konnten.

Trockene Samen sind ein Übergangsstadium zwischen Embryo und Keimling. In solchen Phasen müssen die das neue Stadium kontrollierenden Gene aktiviert werden, während Gene für das „alte“ Stadium stillgelegt werden. Die Gene im Zellkern sind von Proteinen umgeben. Dieser Komplex – das Chromatin – kann mehr oder weniger dicht gepackt sein. Der Grad der Kompaktheit reguliert die Aktivität der Gene: je „offener“ das Chromatin, desto besser die Gene abgelesen werden.

Ob der auf Sparflamme laufende Stoffwechsel oder der geringe Wassergehalt von Samen mit Veränderungen des Chromatins einhergehen, war bislang unklar. Das Team um Wim Soppe vom Max-Planck-Institut für Pflanzenzüchtungsforschung hat jetzt in Studien mit der Ackerschmalwand gezeigt, dass die Zellkerne während der Samenreifung deutlich schrumpfen und sich dabei auch das Chromatin zusammenknäult. Beide Prozesse kehren sich bei der Keimung um. „Die Größe des Zellkerns ist unabhängig vom Ruhezustand der Samen von Arabidopsis thaliana“, sagt Soppe. Vielmehr ist die Verkleinerung des Zellkerns ein aktiver Prozess, um die Resistenz gegenüber Trockenheit zu erhöhen. Die Kondensation des Chromatins wiederum erfolgt unabhängig von den Veränderungen des Zellkerns.

Durch die Erkenntnisse der Kölner Forscher könnten vielleicht auch andere Organismen vor Austrocknung geschützt werden. Denn die Mechanismen, die die Organisation des Chromatins regulieren, haben sich in der Evolution der Lebewesen kaum geändert.

Ansprechpartner
Wim J.J. Soppe
Max-Planck-Institut für Pflanzenzüchtungsforschung, Köln
E-Mail: soppe@mpipz.mpg.de
Originalveröffentlichung
Martijn van Zanten, Maria A. Koini, Regina Geyer, Yongxiu Liu, Vittoria Brambilla, Dorothea Bartels, Maarten Koornneef, Paul Fransz, and Wim J. J. Soppe
Seed maturation in Arabidopsis thaliana is characterized by nuclear size reduction and increased chromatin condensation

Online-Veröffentlichung 28. November 2011, doi: 10.1073/pnas.1117726108 PNAS

Wim J.J. Soppe | Max-Planck-Institut
Weitere Informationen:
http://www.mpg.de/4668150/pflanzensamen_ergbutschutz

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht UVB-Strahlung beeinflusst Verhalten von Stichlingen
13.12.2017 | Rheinische Friedrich-Wilhelms-Universität Bonn

nachricht Mikroorganismen auf zwei Kontinenten studieren
13.12.2017 | Friedrich-Schiller-Universität Jena

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Lange Speicherung photonischer Quantenbits für globale Teleportation

Wissenschaftler am Max-Planck-Institut für Quantenoptik erreichen mit neuer Speichertechnik für photonische Quantenbits Kohärenzzeiten, welche die weltweite...

Im Focus: Long-lived storage of a photonic qubit for worldwide teleportation

MPQ scientists achieve long storage times for photonic quantum bits which break the lower bound for direct teleportation in a global quantum network.

Concerning the development of quantum memories for the realization of global quantum networks, scientists of the Quantum Dynamics Division led by Professor...

Im Focus: Electromagnetic water cloak eliminates drag and wake

Detailed calculations show water cloaks are feasible with today's technology

Researchers have developed a water cloaking concept based on electromagnetic forces that could eliminate an object's wake, greatly reducing its drag while...

Im Focus: Neue Einblicke in die Materie: Hochdruckforschung in Kombination mit NMR-Spektroskopie

Forschern der Universität Bayreuth und des Karlsruhe Institute of Technology (KIT) ist es erstmals gelungen, die magnetische Kernresonanzspektroskopie (NMR) in Experimenten anzuwenden, bei denen Materialproben unter sehr hohen Drücken – ähnlich denen im unteren Erdmantel – analysiert werden. Das in der Zeitschrift Science Advances vorgestellte Verfahren verspricht neue Erkenntnisse über Elementarteilchen, die sich unter hohen Drücken oft anders verhalten als unter Normalbedingungen. Es wird voraussichtlich technologische Innovationen fördern, aber auch neue Einblicke in das Erdinnere und die Erdgeschichte, insbesondere die Bedingungen für die Entstehung von Leben, ermöglichen.

Diamanten setzen Materie unter Hochdruck

Im Focus: Scientists channel graphene to understand filtration and ion transport into cells

Tiny pores at a cell's entryway act as miniature bouncers, letting in some electrically charged atoms--ions--but blocking others. Operating as exquisitely sensitive filters, these "ion channels" play a critical role in biological functions such as muscle contraction and the firing of brain cells.

To rapidly transport the right ions through the cell membrane, the tiny channels rely on a complex interplay between the ions and surrounding molecules,...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Materialinnovationen 2018 – Werkstoff- und Materialforschungskonferenz des BMBF

13.12.2017 | Veranstaltungen

Innovativer Wasserbau im 21. Jahrhundert

13.12.2017 | Veranstaltungen

Innovative Strategien zur Bekämpfung von parasitären Würmern

08.12.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Rest-Spannung trotz Megabeben

13.12.2017 | Geowissenschaften

Computermodell weist den Weg zu effektiven Kombinationstherapien bei Darmkrebs

13.12.2017 | Medizin Gesundheit

Winzige Weltenbummler: In Arktis und Antarktis leben die gleichen Bakterien

13.12.2017 | Geowissenschaften