Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Pflanzenmolekularbiologie: Regulierung durch Proteinabbau in der Pflanzenzelle

28.08.2008
Pressedienst Forschung Aktuell 5/2008 - Pflanzenmolekularbiologie

Proteine, die bei der Entwicklung eines Organismus eine Rolle spielen, müssen zum richtigen Zeitpunkt jeweils aktiviert und dann auch wieder inaktiviert werden.

Der gezielte Abbau dieser Proteine über spezialisierte und hochselektive Systeme stellt einen wichtigen Mechanismus zur Inaktivierung dieser Proteine dar, den der Molekularbiologe Prof. Dr. Claus Schwechheimer erforscht.

Erforschung von Zellapparaten, die auch das Wachstum bei Tier und Mensch kontrollieren

Wenn eine Pflanze wächst und sich entwickelt, müssen sich ihre Zellen teilen und in verschiedene Gewebetypen differenzieren. Damit diese Prozesse kontrolliert ablaufen können, müssen regulatorische Proteine zum richtigen Zeitpunkt gebildet und auch gezielt wieder inaktiviert werden. Die effizienteste Inaktivierung erfolgt über den gezielten und kontrollierten Proteinabbau. "Signalproteine müssen nach einer gewissen Zeit wieder entfernt werden, sonst würden die Zellen immer die gleiche Dauermeldung erhalten, und koordiniertes Wachstum wäre nicht möglich", sagt Prof. Claus Schwechheimer vom Zentrum für Molekularbiologie der Pflanzen der Universität Tübingen.

Claus Schwechheimer, der in Kürze einen Lehrstuhl an der Technischen Universität München übernehmen wird, erforscht die komplizierten Proteinapparate, die den Abbau anderer Proteine regeln, anhand der Ackerschmalwand (Arabidopsis thaliana), einem Modellorganismus der Pflanzengenetiker. Da viele der dafür relevanten Proteinkomplexe zuerst in pflanzlichen Zellen entdeckt und beschrieben wurden, aber bei allen höheren Organismen von der Hefe bis zum Wurm und Menschen vorkommen, sind die Ergebnisse seiner Arbeitsgruppe auch auf die Funktionsweise der Zellen anderer Organismen übertragbar.

Umgekehrt können gut untersuchte Prozesse aus nicht-pflanzlichen Organismen seine Arbeiten an den Pflanzenproteinen befruchten. Unter anderem interessiert sich Schwechheimers Arbeitsgruppe für die Rolle des gezielten Proteinabbaus während der Zellteilung. Claus Schwechheimer will mit Hilfe seiner Forschungen Einblick in ganz grundlegende Vorgänge in den Zellen erhalten.

Auf die Prozesse des gezielten Proteinabbaus wurden die Forscher durch eine kuriose Mutante der Ackerschmalwand aufmerksam, einer Pflanze mit einer zufälligen Genveränderung: Die Keimlinge dieser Mutante, bei der ein Proteinkomplex, das sogenannte COP9-Signalosom, nicht funktioniert, zeigen im Dunkeln das Wachstum einer im Licht gewachsenen Pflanze. "Interessanterweise ist der Proteinkomplex zuerst bei Pflanzen entdeckt und charakterisiert worden. Sehr viel häufiger werden grundlegende zelluläre Vorgänge eher beim Menschen entdeckt, zum Beispiel im Zusammenhang mit der Erforschung von Krankheiten", sagt Schwechheimer. Mit Hilfe des COP9-Signalosoms, so wurde unter anderem durch die Arbeiten von Schwechheimer und seiner Forschergruppe gezeigt, werden sogenannte E3-Ligasen aktiviert, die wiederum für den spezifischen Proteinabbau notwendig sind. Dieser Schritt war offenbar in der Mutante des COP9-Signalosoms unterblieben. "Von diesen E3-Ligasen gibt es fast tausend verschiedene in der Pflanzenzelle. Sie werden benötigt, um jeweils spezielle Proteine abzubauen", sagt Schwechheimer. Ungefähr fünf Prozent des pflanzlichen Erbguts enthalten nur Baupläne für diese Ligasen. "Dahinter lässt sich eine große regulatorische Kraft vermuten, allerdings wissen wir momentan nur von wenigen dieser E3-Ligasen, welche Proteine sie abbauen."

Die E3-Ligasen sind schwer zu untersuchen. Zum einen kann der Ausfall einer E3-Ligase oft durch eine andere kompensiert werden, sodass der Verlust zu keiner Veränderung beim Wachstum führt. Zum anderen kann nur die Kenntnis über das von der E3-Ligase abzubauende Protein Aufschluss über ihre Funktion geben, und diese Proteine kann man nur schwer bestimmen. Für die Erforschung der E3-Ligasen ist zum einen von großer Bedeutung, dass das Erbgut der Ackerschmalwand seit dem Jahr 2000 vollständig entziffert und bekannt ist. Ähneln sich die Gensequenzen verschiedener E3-Ligasen im Erbgut, lässt sich früh erkennen, welche davon vergleichbare Funktionen haben und sich gegenseitig ersetzen könnten. Zum anderen ist für die Erforschung der E3-Ligasen wichtig, dass es speziell bei der Ackerschmalwand eine große Mutantensammlung gibt. Gezielt können Mutanten, bei denen eine einzelne E3-Ligase ausgefallen ist, identifiziert und mit anderen solcher Mutanten kombiniert werden. Bis zur Veröffentlichung des vollständig entzifferten Erbguts der Ackerschmalwand habe man nur einzelne Proteine klonieren und mühsam aus den Genen rekonstruieren können, berichtet der Entwicklungsbiologe Claus Schwechheimer: "Das ging nur sehr langsam voran. Mit der Genomsequenz und der Mutantensammlung kann man deutlich schneller arbeiten, die Methode heißt reverse Genetik. Diese Vorgehensweise ist bei Hefe und Arabidopsis möglich, nicht aber bei Mäusen und Menschen."

Die Signale, die die E3-Ligasen mit dem Proteinkomplex aktivieren, sind bei Pflanzen zum Beispiel Licht, aber auch Wachstumshormone. "Bei vielen pflanzlichen Signalwegen liegen zwischen der Erkennung des Signals und dem Abbau des Proteins erstaunlich wenige Zwischenschritte", sagt Claus Schwechheimer. Auxin, ein wichtiges Pflanzenhormon, funktioniere "wie Klebstoff": Auf der einen Seite wird die E3-Ligase gebunden, auf der anderen das Protein, das abgebaut werden soll. Im Gegensatz zu den proteinabbauenden Komplexen, die sich in höher organisierten Pflanzen- und Tierzellen in ähnlicher Form finden, gibt es zu den Pflanzenhormonen keine Äquivalente bei Tieren, sie sind für Pflanzen spezifisch.

Bei allen Organismen hoch konserviert hingegen sind die E3-Ligase-abhängigen Prozesse, die bei der Zellteilung mitwirken. Bei der Teilung einer Zelle erhält jede der beiden neuen Zellen einen Strang der ursprünglich doppelsträngigen DNA. Ein wichtiger Kontrollmechanismus besteht zum Beispiel darin, dass die Zelle nach der erneuten Verdoppelung der DNA prüft, ob die Ausgangs-DNA korrekt reproduziert wurde. Ist das nicht der Fall, werden Reparaturmechanismen aktiviert. "Wir konnten jetzt anhand unserer Untersuchungen der Arabidopsis-Mutanten des COP9-Signalosoms zeigen, dass diese Mutanten defekte DNA-Stränge haben, und dies könnte der Grund für das schlechte Wachstum der Mutanten sein. Man muss annehmen, dass der Ausfall desselben Proteinkomplexes beim Menschen auch zu einem Wachstumsstopp aufgrund von DNA-Schäden führt", sagt Claus Schwechheimer. Die falsche Reparatur solcher DNA-Schäden, zumal wenn sie gleichzeitig in großer Zahl auftreten oder wenn gleich beide Stränge der DNA brechen, kann zum einen zum Zelltod, zum anderen aber auch zur unkontrollierten Zellteilung führen. Aus der Zusammenarbeit mit seinen Kollegen aus der medizinischen Forschung erhofft sich Claus Schwechheimer jetzt, dass er die Ursache für diese DNA-Schäden, die in einem nicht korrekt abgebauten Protein zu suchen sind, aufdecken kann. (6457 Zeichen)

Nähere Informationen:

Prof. Dr. Claus Schwechheimer
Zentrum für Molekularbiologie der Pflanzen (ZMBP)
Entwicklungsgenetik
Auf der Morgenstelle 5
72076 Tübingen
Tel. 0 70 71/2 97 66 69
Fax 0 70 71/29 51 35
E-Mail claus.schwechheimer@zmbp.uni-tuebingen.de
EBERHARD KARLS UNIVERSITÄT TÜBINGEN
Presse- und Öffentlichkeitsarbeit · Michael Seifert
Wilhelmstr. 5 · 72074 Tübingen
Tel. 0 70 71 · 29 · 7 67 89 · Fax 0 70 71 · 29 · 55 66
Michael.Seifert@uni-tuebingen.de
Verantwortlich für diese Ausgabe: Janna Eberhardt
Tel. 0 70 71 · 29 · 7 78 53 - Janna.Eberhardt@uni-tuebingen.de

Michael Seifert | idw
Weitere Informationen:
http://www.uni-tuebingen.de/uni/qvo/pd/pd.html

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Zebras: Immer der Erinnerung nach
24.05.2017 | Senckenberg Forschungsinstitut und Naturmuseen

nachricht Wichtiges Regulator-Gen für die Bildung der Herzklappen entdeckt
24.05.2017 | Universität Basel

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Orientierungslauf im Mikrokosmos

Physiker der Universität Würzburg können auf Knopfdruck einzelne Lichtteilchen erzeugen, die einander ähneln wie ein Ei dem anderen. Zwei neue Studien zeigen nun, welches Potenzial diese Methode hat.

Der Quantencomputer beflügelt seit Jahrzehnten die Phantasie der Wissenschaftler: Er beruht auf grundlegend anderen Phänomenen als ein herkömmlicher Rechner....

Im Focus: A quantum walk of photons

Physicists from the University of Würzburg are capable of generating identical looking single light particles at the push of a button. Two new studies now demonstrate the potential this method holds.

The quantum computer has fuelled the imagination of scientists for decades: It is based on fundamentally different phenomena than a conventional computer....

Im Focus: Tumult im trägen Elektronen-Dasein

Ein internationales Team von Physikern hat erstmals das Streuverhalten von Elektronen in einem nichtleitenden Material direkt beobachtet. Ihre Erkenntnisse könnten der Strahlungsmedizin zu Gute kommen.

Elektronen in nichtleitenden Materialien könnte man Trägheit nachsagen. In der Regel bleiben sie an ihren Plätzen, tief im Inneren eines solchen Atomverbunds....

Im Focus: Turmoil in sluggish electrons’ existence

An international team of physicists has monitored the scattering behaviour of electrons in a non-conducting material in real-time. Their insights could be beneficial for radiotherapy.

We can refer to electrons in non-conducting materials as ‘sluggish’. Typically, they remain fixed in a location, deep inside an atomic composite. It is hence...

Im Focus: Hauchdünne magnetische Materialien für zukünftige Quantentechnologien entwickelt

Zweidimensionale magnetische Strukturen gelten als vielversprechendes Material für neuartige Datenspeicher, da sich die magnetischen Eigenschaften einzelner Molekülen untersuchen und verändern lassen. Forscher haben nun erstmals einen hauchdünnen Ferrimagneten hergestellt, bei dem sich Moleküle mit verschiedenen magnetischen Zentren auf einer Goldfläche selbst zu einem Schachbrettmuster anordnen. Dies berichten Wissenschaftler des Swiss Nanoscience Institutes der Universität Basel und des Paul Scherrer Institutes in der Wissenschaftszeitschrift «Nature Communications».

Ferrimagneten besitzen zwei magnetische Zentren, deren Magnetismus verschieden stark ist und in entgegengesetzte Richtungen zeigt. Zweidimensionale, quasi...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Meeresschutz im Fokus: Das IASS auf der UN-Ozean-Konferenz in New York vom 5.-9. Juni

24.05.2017 | Veranstaltungen

Diabetes Kongress in Hamburg beginnt heute: Rund 6000 Teilnehmer werden erwartet

24.05.2017 | Veranstaltungen

Wissensbuffet: „All you can eat – and learn”

24.05.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Hochspannung für den Teilchenbeschleuniger der Zukunft

24.05.2017 | Physik Astronomie

3D-Graphen: Experiment an BESSY II zeigt, dass optische Eigenschaften einstellbar sind

24.05.2017 | Physik Astronomie

Optisches Messverfahren für Zellanalysen in Echtzeit - Ulmer Physiker auf der Messe "Sensor+Test"

24.05.2017 | Messenachrichten