Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Pflanzenhormon steuert Nektarproduktion

26.03.2010
Raps produziert Nektar, sobald das Pflanzenhormon Jasmonsäure in seinen Blüten gebildet wird

Raps gehört weltweit zu den zehn wichtigsten Nutzpflanzen. Im Frühling sind die gelb leuchtenden "Ölfelder" nicht zu übersehen: In Deutschland wird dieses Jahr auf 1,46 Millionen Hektar Winterraps angebaut, mindestens 2,2 Millionen Tonnen Rapsöl sind zu erwarten. Auch die Imker werden ihre Bienenkästen an den Rapsfeldern aufbauen, damit die fliegenden Arbeiterinnen Nektar sammeln und die Bestäubung der Rapsblüten und damit einen hohen Ernteertrag der Landwirte sichern. Eine Wissenschaftlerin des Max-Planck-Instituts für Chemische Ökologie hat bei ihren Untersuchungen entdeckt, dass das Pflanzenhormon Jasmonsäure - bekannt als Signalgeber bei Insektenbefall - nicht nur die Blütenentwicklung im Knospenstadium steuert, sondern zusätzlich die Nektarbildung auslösen kann. (PLoS ONE 5, e9265, 2010 - open access)

Jasmonsäure und ihre verwandten Moleküle sind wesentliche Bestandteile molekularer Signalketten im Pflanzengewebe. Diese allgemein als Jasmonate bezeichneten Verbindungen werden beispielsweise gebildet, wenn Raupen an einer Pflanze fressen, und gehören daher als signalgebende Substanzen in die Gruppe der Pflanzenhormone. Durch die Bildung der Jasmonate steuert die Pflanze auch ihre Abwehr gegen Schädlinge, indem sie die Produktion von Giftstoffen stimuliert. Und schon früher war gezeigt worden, dass Jasmonate die Bildung des so genannten "extrafloralen Nektars" steuern - dieser Nektar wird nicht in Blüten, sondern von speziellen Drüsen, den "extrafloralen Nektarien", gebildet und lockt Ameisen als indirekte Verteidiger zu von Herbivoren angefressenen Pflanzen an. Durch die im Nektar enthaltenen Zuckerbestandteile werden die Ameisen für ihren Verteidigungsservice belohnt. Das gleiche Prinzip trifft auch auf den floralen, also in Blüten produzierten Nektar zu, bei dem Pflanzenbestäuber durch die Produktion von Nektar angelockt werden und somit wesentlich zum späteren Samenertrag beitragen. Was aber die Nektarproduktion in Blüten auslöst und steuert, war bislang noch unbekannt.

Unterschiedliche Wirkung in Blüten und Blättern

Radhika Venkatesan, Doktorandin der International Max Planck Research School in Jena, ist dieser Frage am Beispiel des ökonomisch wichtigen und weit verbreiteten Raps nachgegangen. Dabei fand sie heraus, dass das Blütengewebe schon in einem frühen Entwicklungsstadium Jasmonate bildet, worauf unmittelbar danach die Nektarproduktion einsetzt. Dies funktioniert unabhängig von einem Schädlingsbefall. "Wenn wir Raupen auf die Rapsblätter gesetzt haben, die durch ihren Fraß die Jasmonatbildung in den Blättern auslösen, beeinflusste das die Nektarproduktion in den Blüten nicht", so die Forscherin. Auch das Besprühen der grünen Blätter mit Jasmonsäure zeigte keine Wirkung auf die Bildung des Blütennektars. Wird Jasmonsäure jedoch auf die Blüten gesprüht, kann die Nektarbildung sogar noch gesteigert werden. Dies weist auf eine klare Trennung der verschiedenen Jasmonsäurefunktionen in unterschiedlichen Pflanzengeweben hin: Im Blatt- und Spross bewirkt das Hormon Abwehrreaktionen gegen Insekten, im Blütengewebe hingegen steuert es die Nektarbildung.

Der Zusammenhang zwischen Jasmonsäure- und Nektarproduktion wurde durch Experimente mit einem Hemmstoff belegt: Sobald die Blüten mit einem Hemmstoff der Jasmonatsynthese behandelt wurden, dem so genannten Phenidon, blieb die Nektarbildung aus. Bei Aufsprühen des Stoffes auf junge, noch ungeöffnete Blütenknospen wurde zusätzlich deren Entwicklung gehemmt, was bestätigt, dass die Jasmonsäure zusätzlich eine wichtige Rolle bei der Entwicklung der Blüten spielt.

"Die Tatsache, dass die Jasmonsäure so verschiedene Funktionen wie Pflanzenverteidigung und Bestäubung reguliert, ist äußerst interessant und wirft viele neue Fragen auf, besonders zum Verständnis der Evolution dieser Kontrollmechanismen", so Martin Heil, Leiter der Studie. Wilhelm Boland, Direktor am Max-Planck-Institut in Jena, betont: "Je mehr wir über die Hormonwirkung bei der Blütenbildung und Nektarproduktion von Nutzpflanzen wie Raps verstehen, desto gezielter können wir Erträge sichern und vielleicht noch steigern." Auch die Imker könnten von einer gesicherten oder vermehrten Nektarproduktion profitieren. [JWK]

Originalveröffentlichung:
Venkatesan Radhika, Christian Kost, Wilhelm Boland, Martin Heil: The role of jasmonates in floral nectar secretion. PLoS ONE 5, e9265, 2010 (open access).
Weitere Informationen von:
Prof. Wilhelm Boland, MPI für Chemische Ökologie, Tel.: 03641 / 57 - 1200, boland@ice.mpg.de

Prof. Martin Heil, CINVESTAV, Irapuato, Mexiko, Tel.: +52 (462)623 9657, mheil@ira.cinvestav.mx

Bildmaterial:
Angela Overmeyer M.A., MPI für Chemische Ökologie, Tel.: 03641 / 57-2110, overmeyer@ice.mpg.de

Dr. Jan-Wolfhard Kellmann | idw
Weitere Informationen:
http://www.ice.mpg.de/

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht In Hochleistungs-Mais sind mehr Gene aktiv
19.01.2018 | Rheinische Friedrich-Wilhelms-Universität Bonn

nachricht Warum es für Pflanzen gut sein kann auf Sex zu verzichten
19.01.2018 | Universität Wien

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Maschinelles Lernen im Quantenlabor

Auf dem Weg zum intelligenten Labor präsentieren Physiker der Universitäten Innsbruck und Wien ein lernfähiges Programm, das eigenständig Quantenexperimente entwirft. In ersten Versuchen hat das System selbständig experimentelle Techniken (wieder)entdeckt, die heute in modernen quantenoptischen Labors Standard sind. Dies zeigt, dass Maschinen in Zukunft auch eine kreativ unterstützende Rolle in der Forschung einnehmen könnten.

In unseren Taschen stecken Smartphones, auf den Straßen fahren intelligente Autos, Experimente im Forschungslabor aber werden immer noch ausschließlich von...

Im Focus: Artificial agent designs quantum experiments

On the way to an intelligent laboratory, physicists from Innsbruck and Vienna present an artificial agent that autonomously designs quantum experiments. In initial experiments, the system has independently (re)discovered experimental techniques that are nowadays standard in modern quantum optical laboratories. This shows how machines could play a more creative role in research in the future.

We carry smartphones in our pockets, the streets are dotted with semi-autonomous cars, but in the research laboratory experiments are still being designed by...

Im Focus: Fliegen wird smarter – Kommunikationssystem LYRA im Lufthansa FlyingLab

• Prototypen-Test im Lufthansa FlyingLab
• LYRA Connect ist eine von drei ausgewählten Innovationen
• Bessere Kommunikation zwischen Kabinencrew und Passagieren

Die Zukunft des Fliegens beginnt jetzt: Mehrere Monate haben die Finalisten des Mode- und Technologiewettbewerbs „Telekom Fashion Fusion & Lufthansa FlyingLab“...

Im Focus: Ein Atom dünn: Physiker messen erstmals mechanische Eigenschaften zweidimensionaler Materialien

Die dünnsten heute herstellbaren Materialien haben eine Dicke von einem Atom. Sie zeigen völlig neue Eigenschaften und sind zweidimensional – bisher bekannte Materialien sind dreidimensional aufgebaut. Um sie herstellen und handhaben zu können, liegen sie bislang als Film auf dreidimensionalen Materialien auf. Erstmals ist es Physikern der Universität des Saarlandes um Uwe Hartmann jetzt mit Forschern vom Leibniz-Institut für Neue Materialien gelungen, die mechanischen Eigenschaften von freitragenden Membranen atomar dünner Materialien zu charakterisieren. Die Messungen erfolgten mit dem Rastertunnelmikroskop an Graphen. Ihre Ergebnisse veröffentlichen die Forscher im Fachmagazin Nanoscale.

Zweidimensionale Materialien sind erst seit wenigen Jahren bekannt. Die Wissenschaftler André Geim und Konstantin Novoselov erhielten im Jahr 2010 den...

Im Focus: Forscher entschlüsseln zentrales Reaktionsprinzip von Metalloenzymen

Sogenannte vorverspannte Zustände beschleunigen auch photochemische Reaktionen

Was ermöglicht den schnellen Transfer von Elektronen, beispielsweise in der Photosynthese? Ein interdisziplinäres Forscherteam hat die Funktionsweise wichtiger...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Kongress Meditation und Wissenschaft

19.01.2018 | Veranstaltungen

LED Produktentwicklung – Leuchten mit aktuellem Wissen

18.01.2018 | Veranstaltungen

6. Technologie- und Anwendungsdialog am 18. Januar 2018 an der TH Wildau: „Intelligente Logistik“

18.01.2018 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Rittal vereinbart mit dem Betriebsrat von RWG Sozialplan - Zukunftsorientierter Dialog führt zur Einigkeit

19.01.2018 | Unternehmensmeldung

Open Science auf offener See

19.01.2018 | Geowissenschaften

Original bleibt Original - Neues Produktschutzverfahren für KFZ-Kennzeichenschilder

19.01.2018 | Informationstechnologie