Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Pflanzenforschung: Nanodomänen sichtbar gemacht

30.04.2013
Bei Trockenheit kommt es in bestimmten Arealen der pflanzlichen Zellmembran zu deutlichen Veränderungen. Erstmals haben Wissenschaftler diese Areale – Nanodomänen genannt – unter dem Mikroskop sichtbar gemacht und ihre Veränderung analysiert.
Pflanzen sind in der Regel im Boden festgewurzelt und können ihren Standort nicht schnell mal wechseln, wenn es ihnen zu trocken oder in anderer Hinsicht ungemütlich wird. Darum müssen sie sehr aufmerksam auf ihre Umwelt reagieren.

Unter guten Bedingungen nimmt die Wurzel Nährstoffe und das Lebenselixier Wasser auf. Oberirdisch richtet sich der Spross auf die aktuellen Lichtverhältnisse ein, betreibt Photosynthese und stellt Bausteine für Wachstum, Entwicklung und Fortpflanzung her.

Bei Stress schalten die Pflanzen dieses Standardprogramm um und stellen ihr Überleben in den Vordergrund. Sie müssen dazu Stressfaktoren wie Hitze, Trockenheit oder Krankheitserreger wahrnehmen und richtig darauf reagieren. Das schaffen sie über Sensoren, die mit einem jeweils spezifischen Netzwerk verbunden sind.

Verdrahtete Plattformen in den Membranen

„Man stellt sich das heute so vor, dass die Hüllmembranen der Zellen viele winzige Plattformen enthalten, in denen bestimmte Signalproteine miteinander in Wechselwirkung treten. Die Plattformen sind zu einem gewissen Grad miteinander vorverdrahtet. Je nach Signal werden sie dann umgestaltet“, erklärt die Pflanzenwissenschaftlerin Dr. Ines Kreuzer von der Universität Würzburg. Weil die Plattformen in den Membranen so winzig sind, heißen sie auch Nanodomänen.

Umgestaltung der Nanodomänen beobachtet

Wie Kreuzers Forschungsgruppe in der Zeitschrift PNAS berichtet, konnte sie erstmals zeigen, dass die Komponenten des Trockenstress-Signalwegs derartige Nanodomänen besetzen. In Kooperation mit Professor Gregory Harms von der Wilkes University in Pennsylvania (USA) gelang es außerdem, die Veränderung der Domänenzusammensetzung durch das Welkehormon Abscisinsäure (ABA) unter dem Laser-Mikroskop zu verfolgen.

Mit dem Hormon ABA werden Änderungen im Wasserstatus zwischen verschiedenen Teilen der Pflanzen weitergemeldet. Bei Trockenheit sorgen hohe ABA-Spiegel dafür, dass die Pflanze ihren Wasserverlust so gering wie möglich hält.

Mehrere Signalproteine beteiligt

In den Nanodomänen hat das Team um die Würzburger Nachwuchswissenschaftlerin mehrere Signalproteine als Hauptkomponenten des ABA-Signalwegs bestimmt. Kreuzer: „Es handelt sich um den Ionenkanal SLAH3, der durch die Proteinkinase CPK21 angeschaltet wird. Diese Kinase steht unter der Kontrolle der Proteinphosphatase ABI1. Sobald der Rezeptor das Welkehormon erkennt, schaltet er die Phosphatase ab und schickt die Kinase los, um den Ionenkanal zu aktivieren. Dessen Öffnung setzt nun das Signal ‚Wassermangel‘ in einen Ionenfluss um, also in eine elektrische Antwort.“

Phosphatase als „Türsteher“

Die Nanodomänen seien bei diesem Prozess quasi der „Versammlungsort“, an dem sich die beiden Reaktionspartner treffen können. Fehlt das Trockenstress-Hormon ABA, sorgt die Phosphatase dafür, dass der Ionenkanal und die Kinase die Membrandomänen nicht mehr betreten können – die zelluläre Antwort unterbleibt. „Die Weiterverarbeitung des Hormonsignals wird offensichtlich dadurch reguliert, dass bestimmte Proteine Zutritt zu speziellen Membranbereichen haben oder nicht, wobei die Phosphatase die Funktion eines ‚Türstehers‘ zu haben scheint“, so Kreuzers Fazit.

Nächste Schritte der Forschung

Weitere Untersuchungen sollen nun zeigen, wie das Geschehen in den Nanodomänen auf den Zellkern ausstrahlt. Denkbar ist, dass dort Trockentoleranz-Gene angeschaltet werden, die das Überleben der Pflanze auch bei Wassermangel sichern.

Ines Kreuzer forscht mit ihrer Arbeitsgruppe am Lehrstuhl für Botanik I – Molekulare Pflanzenphysiologie und Biophysik der Universität Würzburg, der von Professor Rainer Hedrich geleitet wird. Ihre Untersuchungen werden im Graduiertenkolleg 1342 der Deutschen Forschungsgemeinschaft finanziert.

Arabidopsis nanodomain-delimited ABA signaling pathway regulates the anion channel SLAH3. Fatih Demir, Claudia Horntrich, Jörg O. Blachutzik, Sönke Scherzer, Yvonne Reinders, Sylwia Kierszniowska, Waltraud X. Schulze, Gregory S. Harms, Rainer Hedrich, Dietmar Geiger, Ines Kreuzer, PNAS, 29. April 2013, doi 10.1073/pnas.1211667110

Kontakt

Dr. Ines Kreuzer, Lehrstuhl für Botanik I – Molekulare Pflanzenphysiologie und Biophysik, Universität Würzburg, T (0931) 31-86103, ifuchs@botanik.uni-wuerzburg.de

Prof. Dr. Rainer Hedrich, Lehrstuhl für Botanik I – Molekulare Pflanzenphysiologie und Biophysik, Universität Würzburg, T (0931) 31-86100, hedrich@botanik.uni-wuerzburg.de

Robert Emmerich | idw
Weitere Informationen:
http://www.uni-wuerzburg.de

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Wegbereiter für Vitamin A in Reis
21.07.2017 | Albert-Ludwigs-Universität Freiburg im Breisgau

nachricht Pharmakologie - Im Strom der Bläschen
21.07.2017 | Ludwig-Maximilians-Universität München

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Einblicke unter die Oberfläche des Mars

Die Region erstreckt sich über gut 1000 Kilometer entlang des Äquators des Mars. Sie heißt Medusae Fossae Formation und über ihren Ursprung ist bislang wenig bekannt. Der Geologe Prof. Dr. Angelo Pio Rossi von der Jacobs University hat gemeinsam mit Dr. Roberto Orosei vom Nationalen Italienischen Institut für Astrophysik in Bologna und weiteren Wissenschaftlern einen Teilbereich dieses Gebietes, genannt Lucus Planum, näher unter die Lupe genommen – mithilfe von Radarfernerkundung.

Wie bei einem Röntgenbild dringen die Strahlen einige Kilometer tief in die Oberfläche des Planeten ein und liefern Informationen über die Struktur, die...

Im Focus: Molekulares Lego

Sie können ihre Farbe wechseln, ihren Spin verändern oder von fest zu flüssig wechseln: Eine bestimmte Klasse von Polymeren besitzt faszinierende Eigenschaften. Wie sie das schaffen, haben Forscher der Uni Würzburg untersucht.

Bei dieser Arbeit handele es sich um ein „Hot Paper“, das interessante und wichtige Aspekte einer neuen Polymerklasse behandelt, die aufgrund ihrer Vielfalt an...

Im Focus: Das Universum in einem Kristall

Dresdener Forscher haben in Zusammenarbeit mit einem internationalen Forscherteam einen unerwarteten experimentellen Zugang zu einem Problem der Allgemeinen Realitätstheorie gefunden. Im Fachmagazin Nature berichten sie, dass es ihnen in neuartigen Materialien und mit Hilfe von thermoelektrischen Messungen gelungen ist, die Schwerkraft-Quantenanomalie nachzuweisen. Erstmals konnten so Quantenanomalien in simulierten Schwerfeldern an einem realen Kristall untersucht werden.

In der Physik spielen Messgrößen wie Energie, Impuls oder elektrische Ladung, welche ihre Erscheinungsform zwar ändern können, aber niemals verloren gehen oder...

Im Focus: Manipulation des Elektronenspins ohne Informationsverlust

Physiker haben eine neue Technik entwickelt, um auf einem Chip den Elektronenspin mit elektrischen Spannungen zu steuern. Mit der neu entwickelten Methode kann der Zerfall des Spins unterdrückt, die enthaltene Information erhalten und über vergleichsweise grosse Distanzen übermittelt werden. Das zeigt ein Team des Departement Physik der Universität Basel und des Swiss Nanoscience Instituts in einer Veröffentlichung in Physical Review X.

Seit einigen Jahren wird weltweit untersucht, wie sich der Spin des Elektrons zur Speicherung und Übertragung von Information nutzen lässt. Der Spin jedes...

Im Focus: Manipulating Electron Spins Without Loss of Information

Physicists have developed a new technique that uses electrical voltages to control the electron spin on a chip. The newly-developed method provides protection from spin decay, meaning that the contained information can be maintained and transmitted over comparatively large distances, as has been demonstrated by a team from the University of Basel’s Department of Physics and the Swiss Nanoscience Institute. The results have been published in Physical Review X.

For several years, researchers have been trying to use the spin of an electron to store and transmit information. The spin of each electron is always coupled...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Den Geheimnissen der Schwarzen Löcher auf der Spur

21.07.2017 | Veranstaltungen

Den Nachhaltigkeitskreis schließen: Lebensmittelschutz durch biobasierte Materialien

21.07.2017 | Veranstaltungen

Operatortheorie im Fokus

20.07.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Einblicke unter die Oberfläche des Mars

21.07.2017 | Geowissenschaften

Wegbereiter für Vitamin A in Reis

21.07.2017 | Biowissenschaften Chemie

Den Geheimnissen der Schwarzen Löcher auf der Spur

21.07.2017 | Veranstaltungsnachrichten