Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Pflanzenforschung: Nanodomänen sichtbar gemacht

30.04.2013
Bei Trockenheit kommt es in bestimmten Arealen der pflanzlichen Zellmembran zu deutlichen Veränderungen. Erstmals haben Wissenschaftler diese Areale – Nanodomänen genannt – unter dem Mikroskop sichtbar gemacht und ihre Veränderung analysiert.
Pflanzen sind in der Regel im Boden festgewurzelt und können ihren Standort nicht schnell mal wechseln, wenn es ihnen zu trocken oder in anderer Hinsicht ungemütlich wird. Darum müssen sie sehr aufmerksam auf ihre Umwelt reagieren.

Unter guten Bedingungen nimmt die Wurzel Nährstoffe und das Lebenselixier Wasser auf. Oberirdisch richtet sich der Spross auf die aktuellen Lichtverhältnisse ein, betreibt Photosynthese und stellt Bausteine für Wachstum, Entwicklung und Fortpflanzung her.

Bei Stress schalten die Pflanzen dieses Standardprogramm um und stellen ihr Überleben in den Vordergrund. Sie müssen dazu Stressfaktoren wie Hitze, Trockenheit oder Krankheitserreger wahrnehmen und richtig darauf reagieren. Das schaffen sie über Sensoren, die mit einem jeweils spezifischen Netzwerk verbunden sind.

Verdrahtete Plattformen in den Membranen

„Man stellt sich das heute so vor, dass die Hüllmembranen der Zellen viele winzige Plattformen enthalten, in denen bestimmte Signalproteine miteinander in Wechselwirkung treten. Die Plattformen sind zu einem gewissen Grad miteinander vorverdrahtet. Je nach Signal werden sie dann umgestaltet“, erklärt die Pflanzenwissenschaftlerin Dr. Ines Kreuzer von der Universität Würzburg. Weil die Plattformen in den Membranen so winzig sind, heißen sie auch Nanodomänen.

Umgestaltung der Nanodomänen beobachtet

Wie Kreuzers Forschungsgruppe in der Zeitschrift PNAS berichtet, konnte sie erstmals zeigen, dass die Komponenten des Trockenstress-Signalwegs derartige Nanodomänen besetzen. In Kooperation mit Professor Gregory Harms von der Wilkes University in Pennsylvania (USA) gelang es außerdem, die Veränderung der Domänenzusammensetzung durch das Welkehormon Abscisinsäure (ABA) unter dem Laser-Mikroskop zu verfolgen.

Mit dem Hormon ABA werden Änderungen im Wasserstatus zwischen verschiedenen Teilen der Pflanzen weitergemeldet. Bei Trockenheit sorgen hohe ABA-Spiegel dafür, dass die Pflanze ihren Wasserverlust so gering wie möglich hält.

Mehrere Signalproteine beteiligt

In den Nanodomänen hat das Team um die Würzburger Nachwuchswissenschaftlerin mehrere Signalproteine als Hauptkomponenten des ABA-Signalwegs bestimmt. Kreuzer: „Es handelt sich um den Ionenkanal SLAH3, der durch die Proteinkinase CPK21 angeschaltet wird. Diese Kinase steht unter der Kontrolle der Proteinphosphatase ABI1. Sobald der Rezeptor das Welkehormon erkennt, schaltet er die Phosphatase ab und schickt die Kinase los, um den Ionenkanal zu aktivieren. Dessen Öffnung setzt nun das Signal ‚Wassermangel‘ in einen Ionenfluss um, also in eine elektrische Antwort.“

Phosphatase als „Türsteher“

Die Nanodomänen seien bei diesem Prozess quasi der „Versammlungsort“, an dem sich die beiden Reaktionspartner treffen können. Fehlt das Trockenstress-Hormon ABA, sorgt die Phosphatase dafür, dass der Ionenkanal und die Kinase die Membrandomänen nicht mehr betreten können – die zelluläre Antwort unterbleibt. „Die Weiterverarbeitung des Hormonsignals wird offensichtlich dadurch reguliert, dass bestimmte Proteine Zutritt zu speziellen Membranbereichen haben oder nicht, wobei die Phosphatase die Funktion eines ‚Türstehers‘ zu haben scheint“, so Kreuzers Fazit.

Nächste Schritte der Forschung

Weitere Untersuchungen sollen nun zeigen, wie das Geschehen in den Nanodomänen auf den Zellkern ausstrahlt. Denkbar ist, dass dort Trockentoleranz-Gene angeschaltet werden, die das Überleben der Pflanze auch bei Wassermangel sichern.

Ines Kreuzer forscht mit ihrer Arbeitsgruppe am Lehrstuhl für Botanik I – Molekulare Pflanzenphysiologie und Biophysik der Universität Würzburg, der von Professor Rainer Hedrich geleitet wird. Ihre Untersuchungen werden im Graduiertenkolleg 1342 der Deutschen Forschungsgemeinschaft finanziert.

Arabidopsis nanodomain-delimited ABA signaling pathway regulates the anion channel SLAH3. Fatih Demir, Claudia Horntrich, Jörg O. Blachutzik, Sönke Scherzer, Yvonne Reinders, Sylwia Kierszniowska, Waltraud X. Schulze, Gregory S. Harms, Rainer Hedrich, Dietmar Geiger, Ines Kreuzer, PNAS, 29. April 2013, doi 10.1073/pnas.1211667110

Kontakt

Dr. Ines Kreuzer, Lehrstuhl für Botanik I – Molekulare Pflanzenphysiologie und Biophysik, Universität Würzburg, T (0931) 31-86103, ifuchs@botanik.uni-wuerzburg.de

Prof. Dr. Rainer Hedrich, Lehrstuhl für Botanik I – Molekulare Pflanzenphysiologie und Biophysik, Universität Würzburg, T (0931) 31-86100, hedrich@botanik.uni-wuerzburg.de

Robert Emmerich | idw
Weitere Informationen:
http://www.uni-wuerzburg.de

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Auf der molekularen Streckbank
24.02.2017 | Technische Universität München

nachricht Sicherungskopie im Zentralhirn: Wie Fruchtfliegen ein Ortsgedächtnis bilden
24.02.2017 | Johannes Gutenberg-Universität Mainz

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: „Vernetzte Autonome Systeme“ von acatech und DFKI auf der CeBIT

Auf der IT-Messe CeBIT vom 20. bis 24. März präsentieren acatech – Deutsche Akademie der Technikwissenschaften und das Deutsche Forschungszentrum für Künstliche Intelligenz (DFKI) in Kooperation mit der Deutschen Messe AG vernetzte Autonome Systeme. In Halle 12 am Stand B 63 erwarten die Besucherinnen und Besucher unter anderem Roboter, die Hand in Hand mit Menschen zusammenarbeiten oder die selbstständig gefährliche Umgebungen erkunden.

Auf der IT-Messe CeBIT vom 20. bis 24. März präsentieren acatech – Deutsche Akademie der Technikwissenschaften und das Deutsche Forschungszentrum für...

Im Focus: Kühler Zwerg und die sieben Planeten

Erdgroße Planeten mit gemäßigtem Klima in System mit ungewöhnlich vielen Planeten entdeckt

In einer Entfernung von nur 40 Lichtjahren haben Astronomen ein System aus sieben erdgroßen Planeten entdeckt. Alle Planeten wurden unter Verwendung von boden-...

Im Focus: Mehr Sicherheit für Flugzeuge

Zwei Entwicklungen am Lehrgebiet Rechnerarchitektur der FernUniversität in Hagen können das Fliegen sicherer machen: ein Flugassistenzsystem, das bei einem totalen Triebwerksausfall zum Einsatz kommt, um den Piloten ein sicheres Gleiten zu einem Notlandeplatz zu ermöglichen, und ein Assistenzsystem für Segelflieger, das ihnen das Erreichen größerer Höhen erleichtert. Präsentiert werden sie von Prof. Dr.-Ing. Wolfram Schiffmann auf der Internationalen Fachmesse für Allgemeine Luftfahrt AERO vom 5. bis 8. April in Friedrichshafen.

Zwei Entwicklungen am Lehrgebiet Rechnerarchitektur der FernUniversität in Hagen können das Fliegen sicherer machen: ein Flugassistenzsystem, das bei einem...

Im Focus: HIGH-TOOL unterstützt Verkehrsplanung in Europa

Forschung am Karlsruher Institut für Technologie (KIT) unterstützt die Europäische Kommission bei der Verkehrsplanung: Anhand des neuen Modells HIGH-TOOL lässt sich bewerten, wie verkehrspolitische Maßnahmen langfristig auf Wirtschaft, Gesellschaft und Umwelt wirken. HIGH-TOOL ist ein frei zugängliches Modell mit Modulen für Demografie, Wirtschaft und Ressourcen, Fahrzeugbestand, Nachfrage im Personen- und Güterverkehr sowie Umwelt und Sicherheit. An dem nun erfolgreich abgeschlossenen EU-Projekt unter der Koordination des KIT waren acht Partner aus fünf Ländern beteiligt.

Forschung am Karlsruher Institut für Technologie (KIT) unterstützt die Europäische Kommission bei der Verkehrsplanung: Anhand des neuen Modells HIGH-TOOL lässt...

Im Focus: Zinn in der Photodiode: nächster Schritt zur optischen On-Chip-Datenübertragung

Schon lange suchen Wissenschaftler nach einer geeigneten Lösung, um optische Komponenten auf einem Computerchip zu integrieren. Doch Silizium und Germanium allein – die stoffliche Basis der Chip-Produktion – sind als Lichtquelle kaum geeignet. Jülicher Physiker haben nun gemeinsam mit internationalen Partnern eine Diode vorgestellt, die neben Silizium und Germanium zusätzlich Zinn enthält, um die optischen Eigenschaften zu verbessern. Das Besondere daran: Da alle Elemente der vierten Hauptgruppe angehören, sind sie mit der bestehenden Silizium-Technologie voll kompatibel.

Schon lange suchen Wissenschaftler nach einer geeigneten Lösung, um optische Komponenten auf einem Computerchip zu integrieren. Doch Silizium und Germanium...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Aufbruch: Forschungsmethoden in einer personalisierten Medizin

24.02.2017 | Veranstaltungen

Österreich erzeugt erstmals Erdgas aus Sonnen- und Windenergie

24.02.2017 | Veranstaltungen

Big Data Centrum Ostbayern-Südböhmen startet Veranstaltungsreihe

23.02.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Fraunhofer HHI auf dem Mobile World Congress mit VR- und 5G-Technologien

24.02.2017 | Messenachrichten

MWC 2017: 5G-Hauptstadt Berlin

24.02.2017 | Messenachrichten

Auf der molekularen Streckbank

24.02.2017 | Biowissenschaften Chemie