Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Pflanzenforschung: Nanodomänen sichtbar gemacht

30.04.2013
Bei Trockenheit kommt es in bestimmten Arealen der pflanzlichen Zellmembran zu deutlichen Veränderungen. Erstmals haben Wissenschaftler diese Areale – Nanodomänen genannt – unter dem Mikroskop sichtbar gemacht und ihre Veränderung analysiert.
Pflanzen sind in der Regel im Boden festgewurzelt und können ihren Standort nicht schnell mal wechseln, wenn es ihnen zu trocken oder in anderer Hinsicht ungemütlich wird. Darum müssen sie sehr aufmerksam auf ihre Umwelt reagieren.

Unter guten Bedingungen nimmt die Wurzel Nährstoffe und das Lebenselixier Wasser auf. Oberirdisch richtet sich der Spross auf die aktuellen Lichtverhältnisse ein, betreibt Photosynthese und stellt Bausteine für Wachstum, Entwicklung und Fortpflanzung her.

Bei Stress schalten die Pflanzen dieses Standardprogramm um und stellen ihr Überleben in den Vordergrund. Sie müssen dazu Stressfaktoren wie Hitze, Trockenheit oder Krankheitserreger wahrnehmen und richtig darauf reagieren. Das schaffen sie über Sensoren, die mit einem jeweils spezifischen Netzwerk verbunden sind.

Verdrahtete Plattformen in den Membranen

„Man stellt sich das heute so vor, dass die Hüllmembranen der Zellen viele winzige Plattformen enthalten, in denen bestimmte Signalproteine miteinander in Wechselwirkung treten. Die Plattformen sind zu einem gewissen Grad miteinander vorverdrahtet. Je nach Signal werden sie dann umgestaltet“, erklärt die Pflanzenwissenschaftlerin Dr. Ines Kreuzer von der Universität Würzburg. Weil die Plattformen in den Membranen so winzig sind, heißen sie auch Nanodomänen.

Umgestaltung der Nanodomänen beobachtet

Wie Kreuzers Forschungsgruppe in der Zeitschrift PNAS berichtet, konnte sie erstmals zeigen, dass die Komponenten des Trockenstress-Signalwegs derartige Nanodomänen besetzen. In Kooperation mit Professor Gregory Harms von der Wilkes University in Pennsylvania (USA) gelang es außerdem, die Veränderung der Domänenzusammensetzung durch das Welkehormon Abscisinsäure (ABA) unter dem Laser-Mikroskop zu verfolgen.

Mit dem Hormon ABA werden Änderungen im Wasserstatus zwischen verschiedenen Teilen der Pflanzen weitergemeldet. Bei Trockenheit sorgen hohe ABA-Spiegel dafür, dass die Pflanze ihren Wasserverlust so gering wie möglich hält.

Mehrere Signalproteine beteiligt

In den Nanodomänen hat das Team um die Würzburger Nachwuchswissenschaftlerin mehrere Signalproteine als Hauptkomponenten des ABA-Signalwegs bestimmt. Kreuzer: „Es handelt sich um den Ionenkanal SLAH3, der durch die Proteinkinase CPK21 angeschaltet wird. Diese Kinase steht unter der Kontrolle der Proteinphosphatase ABI1. Sobald der Rezeptor das Welkehormon erkennt, schaltet er die Phosphatase ab und schickt die Kinase los, um den Ionenkanal zu aktivieren. Dessen Öffnung setzt nun das Signal ‚Wassermangel‘ in einen Ionenfluss um, also in eine elektrische Antwort.“

Phosphatase als „Türsteher“

Die Nanodomänen seien bei diesem Prozess quasi der „Versammlungsort“, an dem sich die beiden Reaktionspartner treffen können. Fehlt das Trockenstress-Hormon ABA, sorgt die Phosphatase dafür, dass der Ionenkanal und die Kinase die Membrandomänen nicht mehr betreten können – die zelluläre Antwort unterbleibt. „Die Weiterverarbeitung des Hormonsignals wird offensichtlich dadurch reguliert, dass bestimmte Proteine Zutritt zu speziellen Membranbereichen haben oder nicht, wobei die Phosphatase die Funktion eines ‚Türstehers‘ zu haben scheint“, so Kreuzers Fazit.

Nächste Schritte der Forschung

Weitere Untersuchungen sollen nun zeigen, wie das Geschehen in den Nanodomänen auf den Zellkern ausstrahlt. Denkbar ist, dass dort Trockentoleranz-Gene angeschaltet werden, die das Überleben der Pflanze auch bei Wassermangel sichern.

Ines Kreuzer forscht mit ihrer Arbeitsgruppe am Lehrstuhl für Botanik I – Molekulare Pflanzenphysiologie und Biophysik der Universität Würzburg, der von Professor Rainer Hedrich geleitet wird. Ihre Untersuchungen werden im Graduiertenkolleg 1342 der Deutschen Forschungsgemeinschaft finanziert.

Arabidopsis nanodomain-delimited ABA signaling pathway regulates the anion channel SLAH3. Fatih Demir, Claudia Horntrich, Jörg O. Blachutzik, Sönke Scherzer, Yvonne Reinders, Sylwia Kierszniowska, Waltraud X. Schulze, Gregory S. Harms, Rainer Hedrich, Dietmar Geiger, Ines Kreuzer, PNAS, 29. April 2013, doi 10.1073/pnas.1211667110

Kontakt

Dr. Ines Kreuzer, Lehrstuhl für Botanik I – Molekulare Pflanzenphysiologie und Biophysik, Universität Würzburg, T (0931) 31-86103, ifuchs@botanik.uni-wuerzburg.de

Prof. Dr. Rainer Hedrich, Lehrstuhl für Botanik I – Molekulare Pflanzenphysiologie und Biophysik, Universität Würzburg, T (0931) 31-86100, hedrich@botanik.uni-wuerzburg.de

Robert Emmerich | idw
Weitere Informationen:
http://www.uni-wuerzburg.de

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Software mit Grips
20.04.2018 | Max-Planck-Institut für Hirnforschung, Frankfurt am Main

nachricht Einen Schritt näher an die Wirklichkeit
20.04.2018 | Max-Planck-Institut für Entwicklungsbiologie

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Software mit Grips

Ein computergestütztes Netzwerk zeigt, wie die Ionenkanäle in der Membran von Nervenzellen so verschiedenartige Fähigkeiten wie Kurzzeitgedächtnis und Hirnwellen steuern können

Nervenzellen, die auch dann aktiv sind, wenn der auslösende Reiz verstummt ist, sind die Grundlage für ein Kurzzeitgedächtnis. Durch rhythmisch aktive...

Im Focus: Der komplette Zellatlas und Stammbaum eines unsterblichen Plattwurms

Von einer einzigen Stammzelle zur Vielzahl hochdifferenzierter Körperzellen: Den vollständigen Stammbaum eines ausgewachsenen Organismus haben Wissenschaftlerinnen und Wissenschaftler aus Berlin und München in „Science“ publiziert. Entscheidend war der kombinierte Einsatz von RNA- und computerbasierten Technologien.

Wie werden aus einheitlichen Stammzellen komplexe Körperzellen mit sehr unterschiedlichen Funktionen? Die Differenzierung von Stammzellen in verschiedenste...

Im Focus: Spider silk key to new bone-fixing composite

University of Connecticut researchers have created a biodegradable composite made of silk fibers that can be used to repair broken load-bearing bones without the complications sometimes presented by other materials.

Repairing major load-bearing bones such as those in the leg can be a long and uncomfortable process.

Im Focus: Verbesserte Stabilität von Kunststoff-Leuchtdioden

Polymer-Leuchtdioden (PLEDs) sind attraktiv für den Einsatz in großflächigen Displays und Lichtpanelen, aber ihre begrenzte Stabilität verhindert die Kommerzialisierung. Wissenschaftler aus dem Max-Planck-Institut für Polymerforschung (MPIP) in Mainz haben jetzt die Ursachen der Instabilität aufgedeckt.

Bildschirme und Smartphones, die gerollt und hochgeklappt werden können, sind Anwendungen, die in Zukunft durch die Entwicklung von polymerbasierten...

Im Focus: Writing and deleting magnets with lasers

Study published in the journal ACS Applied Materials & Interfaces is the outcome of an international effort that included teams from Dresden and Berlin in Germany, and the US.

Scientists at the Helmholtz-Zentrum Dresden-Rossendorf (HZDR) together with colleagues from the Helmholtz-Zentrum Berlin (HZB) and the University of Virginia...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

Internationale Konferenz zur Digitalisierung

19.04.2018 | Veranstaltungen

124. Internistenkongress in Mannheim: Internisten rücken Altersmedizin in den Fokus

19.04.2018 | Veranstaltungen

DFG unterstützt Kongresse und Tagungen - Juni 2018

17.04.2018 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Grösster Elektrolaster der Welt nimmt Arbeit auf

20.04.2018 | Interdisziplinäre Forschung

Bilder magnetischer Strukturen auf der Nano-Skala

20.04.2018 | Physik Astronomie

Kieler Forschende entschlüsseln neuen Baustein in der Entwicklung des globalen Klimas

20.04.2018 | Geowissenschaften

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics