Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Pflanzenforschung: Nanodomänen sichtbar gemacht

30.04.2013
Bei Trockenheit kommt es in bestimmten Arealen der pflanzlichen Zellmembran zu deutlichen Veränderungen. Erstmals haben Wissenschaftler diese Areale – Nanodomänen genannt – unter dem Mikroskop sichtbar gemacht und ihre Veränderung analysiert.
Pflanzen sind in der Regel im Boden festgewurzelt und können ihren Standort nicht schnell mal wechseln, wenn es ihnen zu trocken oder in anderer Hinsicht ungemütlich wird. Darum müssen sie sehr aufmerksam auf ihre Umwelt reagieren.

Unter guten Bedingungen nimmt die Wurzel Nährstoffe und das Lebenselixier Wasser auf. Oberirdisch richtet sich der Spross auf die aktuellen Lichtverhältnisse ein, betreibt Photosynthese und stellt Bausteine für Wachstum, Entwicklung und Fortpflanzung her.

Bei Stress schalten die Pflanzen dieses Standardprogramm um und stellen ihr Überleben in den Vordergrund. Sie müssen dazu Stressfaktoren wie Hitze, Trockenheit oder Krankheitserreger wahrnehmen und richtig darauf reagieren. Das schaffen sie über Sensoren, die mit einem jeweils spezifischen Netzwerk verbunden sind.

Verdrahtete Plattformen in den Membranen

„Man stellt sich das heute so vor, dass die Hüllmembranen der Zellen viele winzige Plattformen enthalten, in denen bestimmte Signalproteine miteinander in Wechselwirkung treten. Die Plattformen sind zu einem gewissen Grad miteinander vorverdrahtet. Je nach Signal werden sie dann umgestaltet“, erklärt die Pflanzenwissenschaftlerin Dr. Ines Kreuzer von der Universität Würzburg. Weil die Plattformen in den Membranen so winzig sind, heißen sie auch Nanodomänen.

Umgestaltung der Nanodomänen beobachtet

Wie Kreuzers Forschungsgruppe in der Zeitschrift PNAS berichtet, konnte sie erstmals zeigen, dass die Komponenten des Trockenstress-Signalwegs derartige Nanodomänen besetzen. In Kooperation mit Professor Gregory Harms von der Wilkes University in Pennsylvania (USA) gelang es außerdem, die Veränderung der Domänenzusammensetzung durch das Welkehormon Abscisinsäure (ABA) unter dem Laser-Mikroskop zu verfolgen.

Mit dem Hormon ABA werden Änderungen im Wasserstatus zwischen verschiedenen Teilen der Pflanzen weitergemeldet. Bei Trockenheit sorgen hohe ABA-Spiegel dafür, dass die Pflanze ihren Wasserverlust so gering wie möglich hält.

Mehrere Signalproteine beteiligt

In den Nanodomänen hat das Team um die Würzburger Nachwuchswissenschaftlerin mehrere Signalproteine als Hauptkomponenten des ABA-Signalwegs bestimmt. Kreuzer: „Es handelt sich um den Ionenkanal SLAH3, der durch die Proteinkinase CPK21 angeschaltet wird. Diese Kinase steht unter der Kontrolle der Proteinphosphatase ABI1. Sobald der Rezeptor das Welkehormon erkennt, schaltet er die Phosphatase ab und schickt die Kinase los, um den Ionenkanal zu aktivieren. Dessen Öffnung setzt nun das Signal ‚Wassermangel‘ in einen Ionenfluss um, also in eine elektrische Antwort.“

Phosphatase als „Türsteher“

Die Nanodomänen seien bei diesem Prozess quasi der „Versammlungsort“, an dem sich die beiden Reaktionspartner treffen können. Fehlt das Trockenstress-Hormon ABA, sorgt die Phosphatase dafür, dass der Ionenkanal und die Kinase die Membrandomänen nicht mehr betreten können – die zelluläre Antwort unterbleibt. „Die Weiterverarbeitung des Hormonsignals wird offensichtlich dadurch reguliert, dass bestimmte Proteine Zutritt zu speziellen Membranbereichen haben oder nicht, wobei die Phosphatase die Funktion eines ‚Türstehers‘ zu haben scheint“, so Kreuzers Fazit.

Nächste Schritte der Forschung

Weitere Untersuchungen sollen nun zeigen, wie das Geschehen in den Nanodomänen auf den Zellkern ausstrahlt. Denkbar ist, dass dort Trockentoleranz-Gene angeschaltet werden, die das Überleben der Pflanze auch bei Wassermangel sichern.

Ines Kreuzer forscht mit ihrer Arbeitsgruppe am Lehrstuhl für Botanik I – Molekulare Pflanzenphysiologie und Biophysik der Universität Würzburg, der von Professor Rainer Hedrich geleitet wird. Ihre Untersuchungen werden im Graduiertenkolleg 1342 der Deutschen Forschungsgemeinschaft finanziert.

Arabidopsis nanodomain-delimited ABA signaling pathway regulates the anion channel SLAH3. Fatih Demir, Claudia Horntrich, Jörg O. Blachutzik, Sönke Scherzer, Yvonne Reinders, Sylwia Kierszniowska, Waltraud X. Schulze, Gregory S. Harms, Rainer Hedrich, Dietmar Geiger, Ines Kreuzer, PNAS, 29. April 2013, doi 10.1073/pnas.1211667110

Kontakt

Dr. Ines Kreuzer, Lehrstuhl für Botanik I – Molekulare Pflanzenphysiologie und Biophysik, Universität Würzburg, T (0931) 31-86103, ifuchs@botanik.uni-wuerzburg.de

Prof. Dr. Rainer Hedrich, Lehrstuhl für Botanik I – Molekulare Pflanzenphysiologie und Biophysik, Universität Würzburg, T (0931) 31-86100, hedrich@botanik.uni-wuerzburg.de

Robert Emmerich | idw
Weitere Informationen:
http://www.uni-wuerzburg.de

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Einzelne Proteine bei der Arbeit beobachten
08.12.2016 | Albert-Ludwigs-Universität Freiburg im Breisgau

nachricht Herz-Bindegewebe unter Strom
08.12.2016 | Universitäts-Herzzentrum Freiburg - Bad Krozingen

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Rätsel um Mott-Isolatoren gelöst

Universelles Verhalten am Mott-Metall-Isolator-Übergang aufgedeckt

Die Ursache für den 1937 von Sir Nevill Francis Mott vorhergesagten Metall-Isolator-Übergang basiert auf der gegenseitigen Abstoßung der gleichnamig geladenen...

Im Focus: Poröse kristalline Materialien: TU Graz-Forscher zeigt Methode zum gezielten Wachstum

Mikroporöse Kristalle (MOFs) bergen große Potentiale für die funktionalen Materialien der Zukunft. Paolo Falcaro von der TU Graz et al zeigen in Nature Materials, wie man MOFs gezielt im großen Maßstab wachsen lässt.

„Metal-organic frameworks“ (MOFs) genannte poröse Kristalle bestehen aus metallischen Knotenpunkten mit organischen Molekülen als Verbindungselemente. Dank...

Im Focus: Gravitationswellen als Sensor für Dunkle Materie

Die mit der Entdeckung von Gravitationswellen entstandene neue Disziplin der Gravitationswellen-Astronomie bekommt eine weitere Aufgabe: die Suche nach Dunkler Materie. Diese könnte aus einem Bose-Einstein-Kondensat sehr leichter Teilchen bestehen. Wie Rechnungen zeigen, würden Gravitationswellen gebremst, wenn sie durch derartige Dunkle Materie laufen. Dies führt zu einer Verspätung von Gravitationswellen relativ zu Licht, die bereits mit den heutigen Detektoren messbar sein sollte.

Im Universum muss es gut fünfmal mehr unsichtbare als sichtbare Materie geben. Woraus diese Dunkle Materie besteht, ist immer noch unbekannt. Die...

Im Focus: Significantly more productivity in USP lasers

In recent years, lasers with ultrashort pulses (USP) down to the femtosecond range have become established on an industrial scale. They could advance some applications with the much-lauded “cold ablation” – if that meant they would then achieve more throughput. A new generation of process engineering that will address this issue in particular will be discussed at the “4th UKP Workshop – Ultrafast Laser Technology” in April 2017.

Even back in the 1990s, scientists were comparing materials processing with nanosecond, picosecond and femtosesecond pulses. The result was surprising:...

Im Focus: Wie sich Zellen gegen Salmonellen verteidigen

Bioinformatiker der Goethe-Universität haben das erste mathematische Modell für einen zentralen Verteidigungsmechanismus der Zelle gegen das Bakterium Salmonella entwickelt. Sie können ihren experimentell arbeitenden Kollegen damit wertvolle Anregungen zur Aufklärung der beteiligten Signalwege geben.

Jedes Jahr sind Salmonellen weltweit für Millionen von Infektionen und tausende Todesfälle verantwortlich. Die Körperzellen können sich aber gegen die...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Firmen- und Forschungsnetzwerk Munitect tagt am IOW

08.12.2016 | Veranstaltungen

NRW Nano-Konferenz in Münster

07.12.2016 | Veranstaltungen

Wie aus reinen Daten ein verständliches Bild entsteht

05.12.2016 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Einzelne Proteine bei der Arbeit beobachten

08.12.2016 | Biowissenschaften Chemie

Intelligente Filter für innovative Leichtbaukonstruktionen

08.12.2016 | Messenachrichten

Seminar: Ströme und Spannungen bedarfsgerecht schalten!

08.12.2016 | Seminare Workshops