Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Pflanzenblüte ist eine Frage des Timings

26.09.2013
Eine zu frühe oder zu späte Blüte kann für Pflanzen schwerwiegende Folgen haben: Sie kann die Ausbeute an Samen erheblich verringern und gefährdet so den reproduktiven Erfolg einer ganzen Saison.

Um den idealen Blühzeitpunkt nicht zu verpassen, verfügen Pflanzen daher über ein umfangreiches genetisches Kontrollsystem, an dem mehrere Dutzend Erbanlagen beteiligt sind. Unter der Leitung von Markus Schmid, Max-Planck-Institut für Entwicklungsbiologie, hat ein Forscherteam nun zwei Schlüsselgene in diesem Netzwerk genauer untersucht, die den Einfluss der Temperatur auf den Blühzeitpunkt vermitteln.


Die Ackerschmalwand Arabidopsis thaliana reguliert ihre Blüte je nach Temperatur: links: 27 Grad, Mitte: 23 Grad, rechts: 16 Grad.

© MPI für Entwicklungsbiologie/Schmid


Arabidopsis blüht bei unterschiedlichen Temperaturen zu unterschiedlichen Zeiten (links: 16 Grad, rechts: 23 Grad).

© MPI für Entwicklungsbiologie/Schmid

Viele der Gene, die an der Kontrolle des Blühzeitpunkts beteiligt sind, waren den Tübinger Forschern und ihren Kollegen um Prof. Richard Immink von Plant Research International in den Niederlanden bereits aus früheren Studien an der Ackerschmalwand Arabidopsis thaliana bekannt. "Das genetische Netzwerk integriert innere Faktoren wie den Hormonstatus der Pflanze ebenso wie äußere Faktoren, etwa die Tageslänge oder die Temperatur", erläutert Projektleiter Schmid. Über welche molekularen Mechanismen die Umgebungstemperatur auf die Blütenbildung einwirkt, sei allerdings noch weitgehend unerforscht. Gemeinsam mit seinem Team richtete er seine Aufmerksamkeit daher auf zwei Erbanlagen - FLM (FLOWERING LOCUS M) und SVP (SHORT VEGETATIVE PHASE) - denen frühe Studien bereits eine Schlüsselrolle bei der temperaturabhängigen Kontrolle des Blühzeitpunkts zugeschrieben hatten.

Wie diese Versuche gezeigt haben, ist dabei der Vorgang des alternativen Spleißens von entscheidender Bedeutung. Er ermöglicht es der Pflanze, aus einem Gen mehrere unterschiedliche Protein-Varianten herzustellen. Dabei wird zunächst wie gewohnt eine mRNA-Abschrift des Gens angefertigt. Diese prä-mRNA wird jedoch nicht direkt in ein Protein übersetzt, sondern zunächst zurechtgeschnitten - ein Vorgang, den Genetiker als Spleißen bezeichnen. Beim alternativen Spleißen kann dies auf unterschiedliche Weise geschehen, so dass verschiedene reife mRNAs und letztlich unterschiedliche Proteine entstehen.

Beim FLM-Gen von Arabidopsis treten hauptsächlich zwei Spleißvarianten auf, die als FLM-β und FLM-δ bezeichnet werden. Wie die Tübinger Forscher berichten, entsteht bei niedrigen Temperaturen vor allem FLM-β. Bei steigenden Temperaturen geht dieser Anteil immer mehr zugunsten von FLM-δ zurück. "Die Umstellung erfolgt recht rasch", berichtet David Posé, Erstautor der aktuellen Studie. "Bei einer Erwärmung von 16°C auf 27°C passt sich das Verhältnis binnen 24 Stunden an."

Wie Schmid und seine Kollegen in aufwändigen Bindungsstudien herausgefunden haben, schließen sich FLM-β und SVP zu einem Proteinkomplex zusammen, der sich effektiv an viele Stellen der DNA anlagert. Dabei handelt es sich oftmals um regulatorische Bereiche von Genen, die an der Regulation des Blühzeitpunkts und der Blütenbildung beteiligt sind. "Der SVP–FLM-β-Komplex wirkt wie ein Repressor, der das Blühen unterdrückt", erläutert Richard Immink, der sich auf die Physiologie der Blühinduktion spezialisiert hat. Ein Komplex aus SVP und dem "Wärmeindikator" FLM-δ dagegen ist kaum in der Lage, sich an DNA anzulagern und dort regulatorisch zu wirken. In der Folge werden die blütenbildenden Gene aktiv.

"Die Pflanzen haben damit einen sehr effizienten und eleganten Regulationsmechanismus gefunden", zeigt Projektleiter Schmid sich beeindruckt. Anstatt sich zwei Gene zu leisten, von denen eines die Blütenbildung fördert und das andere sie unterdrückt, sind diese gegensätzlichen Funktionen in einem Gen vereinigt. Daraus ergibt sich eine doppelte Regulation: Mit steigender Temperatur wird der "Blütenblocker" FLM-β nicht nur seltener hergestellt - er muss zusätzlich mit seinem eigenen Schwesterprotein um die SVP-Bindung konkurrieren.

Verschiedene Arabidopsis-Stämme blühen zum Teil zu recht unterschiedlichen Zeitpunkten, und ein Teil dieses Unterschieds beruht auf der natürlichen Variation des FLM-Gens. Diese Variation hilft den Pflanzen vermutlich, mit wechselnden Wachstumsbedingungen in ganz unterschiedlichen Habitaten zurechtzukommen. In ähnlicher Weise könnte sie es ihnen auch ermöglichen, sich an die schleichende Erwärmung im Zuge des Klimawandels anzupassen. Für Schmid und seine Kollegen steht es außer Frage, dass der neu entdeckte Mechanismus hierbei von großer Bedeutung sein wird - insbesondere für Pflanzen, die nicht nach Norden oder in kühlere Habitate ausweichen können. "Welche Rolle das temperatur-abhängige alternative Spleißen bei dieser Anpassung spielt, sollte in jedem Fall genauer untersucht werden", resümieren die Wissenschaftler.

Ansprechpartner

Prof. Dr. Markus Schmid
Max-Planck-Institut für Entwicklungsbiologie, Tübingen
Telefon: +49 7071 601-1411
E-Mail: Markus.Schmid@­tuebingen.mpg.de
Nadja Winter
Max-Planck-Institut für Entwicklungsbiologie, Tübingen
Telefon: +49 7071 601-444
Fax: +49 7071 601-359
E-Mail: presse-eb@­tuebingen.mpg.de
Originalpublikation
David Posé et al.
Temperature-dependent regulation of flowering by antagonistic FLM variants
Nature, 26 September 2013 (doi:10.1038/nature12633)

Nadja Winter | Max-Planck-Institut
Weitere Informationen:
http://www.mpg.de/7529329/bluehzeitpunkt_arabidopsis
http://www.weigelworld.org/research/projects/floweringtimes

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Maßgeschneiderte Nanopartikel gegen Krebs gesucht
29.06.2017 | Christian-Albrechts-Universität zu Kiel

nachricht Elektrisch leitende Hülle für Bakterien
29.06.2017 | Gesellschaft Deutscher Chemiker e.V.

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Der schärfste Laserstrahl der Welt

Physikalisch-Technische Bundesanstalt entwickelt einen Laser mit nur 10 mHz Linienbreite

So nah an den idealen Laser kam bisher noch keiner: In der Theorie hat ein Laser zwar genau eine einzige Farbe (Frequenz bzw. Wellenlänge). In Wirklichkeit...

Im Focus: Wellen schlagen

Computerwissenschaftler verwenden die Theorie von Wellenpaketen, um realistische und detaillierte Simulationen von Wasserwellen in Echtzeit zu erstellen. Ihre Ergebnisse werden auf der diesjährigen SIGGRAPH Konferenz vorgestellt.

Denkt man an einen See, einen Fluss oder an das Meer, so sieht man vor sich, wie sich das Wasser kräuselt, wie Wellen gegen die Felsen schlagen, wie Bugwellen...

Im Focus: Making Waves

Computer scientists use wave packet theory to develop realistic, detailed water wave simulations in real time. Their results will be presented at this year’s SIGGRAPH conference.

Think about the last time you were at a lake, river, or the ocean. Remember the ripples of the water, the waves crashing against the rocks, the wake following...

Im Focus: Schnelles und umweltschonendes Laserstrukturieren von Werkzeugen zur Folienherstellung

Kosteneffizienz und hohe Produktivität ohne dabei die Umwelt zu belasten: Im EU-Projekt »PoLaRoll« entwickelt das Fraunhofer-Institut für Produktionstechnologie IPT aus Aachen gemeinsam mit dem Oberhausener Fraunhofer-Institut für Umwelt-, Sicherheit- und Energietechnik UMSICHT und sechs Industriepartnern ein Modul zur direkten Laser-Mikrostrukturierung in einem Rolle-zu-Rolle-Verfahren. Ziel ist es, mit Hilfe dieses Systems eine siebartige Metallfolie als Demonstrator zu fertigen, die zum Sonnenschutz von Glasfassaden verwendet wird: Durch ihre besondere Geometrie wird die Sonneneinstrahlung reduziert, woraus sich ein verminderter Energieaufwand für Kühlung und Belüftung ergibt.

Das Fraunhofer IPT ist im Projekt »PoLaRoll« für die Prozessentwicklung der Laserstrukturierung sowie für die Mess- und Systemtechnik zuständig. Von den...

Im Focus: Das Auto lernt vorauszudenken

Ein neues Christian Doppler Labor an der TU Wien beschäftigt sich mit der Regelung und Überwachung von Antriebssystemen – mit Unterstützung des Wissenschaftsministeriums und von AVL List.

Wer ein Auto fährt, trifft ständig Entscheidungen: Man gibt Gas, bremst und dreht am Lenkrad. Doch zusätzlich muss auch das Fahrzeug selbst ununterbrochen...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Marine Pilze – hervorragende Quellen für neue marine Wirkstoffe?

28.06.2017 | Veranstaltungen

Willkommen an Bord!

28.06.2017 | Veranstaltungen

Internationale Fachkonferenz IEEE ICDCM - Lokale Gleichstromnetze bereichern die Energieversorgung

27.06.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Der schärfste Laserstrahl der Welt

29.06.2017 | Physik Astronomie

Maßgeschneiderte Nanopartikel gegen Krebs gesucht

29.06.2017 | Biowissenschaften Chemie

Wolken über der Wetterküche: Die Azoren im Fokus eines internationalen Forschungsteams

29.06.2017 | Geowissenschaften