Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Wie Pflanzen Wasser sparen

01.12.2009
Weniger Niederschläge, höhere Temperaturen: Auch Pflanzen leiden unter dem Klimawandel. Wie sie dennoch längere Trockenperioden überstehen, erforscht der Biologe Rainer Hedrich an der Uni Würzburg. In der neuesten Ausgabe der Fachzeitschrift Proceedings stellt er seine Ergebnisse vor.

Wenn sich im Dezember in Kopenhagen die Regierungschefs der UN-Mitgliedsländer zum Weltklimagipfel treffen, steht er wieder auf der Tagesordnung: der Klimawandel. Das Ringen der Politik um eine Begrenzung der Erderwärmung wird auch von Pflanzenforschern und Landwirtschaftsexperten mit Interesse verfolgt werden. Schließlich können diese schon jetzt die Auswirkungen des Temperaturanstiegs beobachten.

Moderne Kulturpflanzen haben das Wassersparen verlernt

Auch Rainer Hedrich, Inhaber des Lehrstuhls für Molekulare Pflanzenphysiologie und Biophysik an der Universität Würzburg, interessiert sich für die Folgen lang anhaltender Trockenperioden und steigender Temperaturen für die Pflanzenwelt. "Durch die Jahrhunderte lange Züchtung unserer heutigen Kulturpflanzen haben diese an Vitalität eingebüßt. Unsere Ackerpflanzen haben, überspitzt formuliert, das optimale Wassersparen verlernt", sagt Hedrich. Einem globalen Klimawandel mit ausgedehnten, heißen Trockenperioden hätten sie deshalb nichts entgegen zu setzen.

Hedrich hat den Wasserhaushalt von Pflanzen erforscht. Über seine neuesten Erkenntnisse berichtet die Fachzeitschrift Proceedings der Nationalen Akademie der Wissenschaften (USA) in ihrer jüngsten Ausgabe.

Dilemma aus Wassermangel und Wasserverlust

Pflanzen entnehmen dem Boden Wasser und holen sich Kohlendioxid aus der Luft. Im Verlauf der Photosynthese produzieren sie daraus Kohlenhydrate und Sauerstoff. Wasser geben sie in Form von Wasserdampf an die Umwelt ab.

"Die Wasserdampfabgabe als unvermeidbare Konsequenz der Photosynthese stellt für die Pflanze kein Problem dar, solange sie genügend Wasser zur Verfügung hat", sagt Hedrich. Bleibt der Regen jedoch aus, könne die Pflanze kein Wasser mehr über ihre Wurzeln aufnehmen und verliere gleichzeitig vermehrt Wasser an die immer trockener werdende Atmosphäre.

Diesem Dilemma ist die Pflanze jedoch nicht schutzlos ausgeliefert. "Ihre Außenhaut, die sogenannte Epidermis, ist mit einer für Wasser und Kohlendioxid undurchlässigen Wachsschicht überzogen", sagt Hedrich. Allein über mikroskopisch kleine, regulierbare Poren kann die Pflanze Kohlendioxid aufnehmen und Wasserdampf abgeben.

Sinneszellen registrieren den Wassergehalt der Pflanze

Wie sie das macht? "Diese Poren bestehen aus zwei Schließzellen. Wenn sich diese ausdehnen, öffnet sich die Pore; schrumpfen sie, schließt sich die Pore wieder", erklärt Hedrich. Gesteuert wird dieser Prozess, indem die Pflanze bestimmte Salze - das positiv geladene Kalium- und das negativ geladene Chlorid-Ion - durch besondere Kanäle in die Schließzelle hinein und wieder heraus schleust.

"Beim Wassersparen kommt den Anionenkanälen der Schließzellen eine entscheidende Rolle zu", so Hedrich. Die Pflanze nimmt die Austrocknung des Bodens wahr und sendet ein Hormon an die Schließzellen. Dort angekommen, aktiviert dieses Hormon eine Signalkette, in deren Folge sich die Anionenkanäle öffnen und einen Prozess in Gang setzen, an dessen Ende sich die die Poren schließen.

Die Sinneszellen, die in der Lage sind, Wasserstress zu erkennen, verfügen auch über die Fähigkeit, die Kohlendioxid-Konzentration im Blatt sowie die Intensität und Zusammensetzung des Sonnenlichts zu messen. "Damit ist die Pflanze in der Lage, die Poren geschlossen zu halten und nur dann für die Aufnahme von Kohlendioxid zu öffnen, wenn ausreichend Wasser und Licht für die Kohlenhydratproduktion zur Verfügung steht", so Hedrich.

Konsequenzen für die Landwirtschaft

Mit dem exakten Wissen um die Stoffwechselvorgänge in Pflanzen hofft Hedrich, moderne Kulturpflanzen für die Anforderungen des Klimawandels fit machen zu können. Dabei gilt sein Interesse auch Pflanzen, die - wie die berühmte "Rose von Jericho" - unter Wassermangel Überlebenskünstler sind. "Diese Extremophilen können sogar vollständiges Austrocknen überstehen", sagt er. Das genaue Verständnis dieser Fähigkeit könnte dazu beitragen, Nutzpflanzen gezielt im Hinblick auf die Erderwärmung zu optimieren.

"Activity of guard cell anion channel SLAC1 is controlled by drought-stress signaling kinase-phosphatase pair". Dietmar Geiger, Sönke Scherzer, Patrick Mumm, Annette Stange, Irene Marten, Hubert Bauer, Peter Ache, Susanne Matschi, Anja Liese, Khaled A. S. Al-Rasheid, Tina Romeis, and Rainer Hedrich. www.pnas.org/cgi/doi/10.1073/pnas.0912021106

Kontakt: Prof. Dr. Rainer Hedrich, T (0931) 31-86100, hedrich@botanik.uni-wuerzburg.de

Gunnar Bartsch | idw
Weitere Informationen:
http://www.uni-wuerzburg.de

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Nanoskopie auf dem Chip: Mikroskopie in HD-Qualität
25.04.2017 | Universität Bielefeld

nachricht Wehrhaft gegen aggressiven Sauerstoff - Metalloxid-Nickelschaum-Elektroden in der Wasseraufspaltung
25.04.2017 | Universität Ulm

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Nanoskopie auf dem Chip: Mikroskopie in HD-Qualität

Neue Erfindung der Universitäten Bielefeld und Tromsø (Norwegen)

Physiker der Universität Bielefeld und der norwegischen Universität Tromsø haben einen Chip entwickelt, der super-auflösende Lichtmikroskopie, auch...

Im Focus: Löschbare Tinte für den 3-D-Druck

Im 3-D-Druckverfahren durch Direktes Laserschreiben können Mikrometer-große Strukturen mit genau definierten Eigenschaften geschrieben werden. Forscher des Karlsruher Institus für Technologie (KIT) haben ein Verfahren entwickelt, durch das sich die 3-D-Tinte für die Drucker wieder ‚wegwischen‘ lässt. Die bis zu hundert Nanometer kleinen Strukturen lassen sich dadurch wiederholt auflösen und neu schreiben - ein Nanometer entspricht einem millionstel Millimeter. Die Entwicklung eröffnet der 3-D-Fertigungstechnik vielfältige neue Anwendungen, zum Beispiel in der Biologie oder Materialentwicklung.

Beim Direkten Laserschreiben erzeugt ein computergesteuerter, fokussierter Laserstrahl in einem Fotolack wie ein Stift die Struktur. „Eine Tinte zu entwickeln,...

Im Focus: Leichtbau serientauglich machen

Immer mehr Autobauer setzen auf Karosserieteile aus kohlenstofffaserverstärktem Kunststoff (CFK). Dennoch müssen Fertigungs- und Reparaturkosten weiter gesenkt werden, um CFK kostengünstig nutzbar zu machen. Das Laser Zentrum Hannover e.V. (LZH) hat daher zusammen mit der Volkswagen AG und fünf weiteren Partnern im Projekt HolQueSt 3D Laserprozesse zum automatisierten Besäumen, Bohren und Reparieren von dreidimensionalen Bauteilen entwickelt.

Automatisiert ablaufende Bearbeitungsprozesse sind die Grundlage, um CFK-Bauteile endgültig in die Serienproduktion zu bringen. Ausgerichtet an einem...

Im Focus: Making lightweight construction suitable for series production

More and more automobile companies are focusing on body parts made of carbon fiber reinforced plastics (CFRP). However, manufacturing and repair costs must be further reduced in order to make CFRP more economical in use. Together with the Volkswagen AG and five other partners in the project HolQueSt 3D, the Laser Zentrum Hannover e.V. (LZH) has developed laser processes for the automatic trimming, drilling and repair of three-dimensional components.

Automated manufacturing processes are the basis for ultimately establishing the series production of CFRP components. In the project HolQueSt 3D, the LZH has...

Im Focus: Wonder material? Novel nanotube structure strengthens thin films for flexible electronics

Reflecting the structure of composites found in nature and the ancient world, researchers at the University of Illinois at Urbana-Champaign have synthesized thin carbon nanotube (CNT) textiles that exhibit both high electrical conductivity and a level of toughness that is about fifty times higher than copper films, currently used in electronics.

"The structural robustness of thin metal films has significant importance for the reliable operation of smart skin and flexible electronics including...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Berührungslose Schichtdickenmessung in der Qualitätskontrolle

25.04.2017 | Veranstaltungen

Forschungsexpedition „Meere und Ozeane“ mit dem Ausstellungsschiff MS Wissenschaft

24.04.2017 | Veranstaltungen

3. Bionik-Kongress Baden-Württemberg

24.04.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Nanoskopie auf dem Chip: Mikroskopie in HD-Qualität

25.04.2017 | Biowissenschaften Chemie

Berührungslose Schichtdickenmessung in der Qualitätskontrolle

25.04.2017 | Veranstaltungsnachrichten

Phoenix Contact übernimmt Spezialisten für Netzleittechnik

24.04.2017 | Unternehmensmeldung