Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Pflanzen treten aus dem Schatten hervor

05.09.2011
Neue Ergebnisse über das Wirkungsmaximum eines Lichtrezeptors
Freiburger Forscher zeigen im Fachmagazin CELL, wie Pflanzen das Wirkungsmaximum eines Lichtrezeptors von Rot zu Dunkelrot verschieben. So gedeihen Pflanzen im Schatten anderer Gewächse.

Keimlinge einer höheren Pflanze, der Acker-Schmalwand (Arabidopsis thaliana), die in dunkelrotem Licht gewachsen sind.

Licht beeinflusst viele Prozesse im Leben einer Pflanze: Sie unterscheidet, ob die Sonne scheint oder nicht, und löst je nach Helligkeit und Zusammensetzung des Lichts verschiedene Reaktionen aus. Dabei nutzen Pflanzen aus, dass im Schatten anderer Gewächse das Licht stark mit dunkelroten Farbanteilen angereichert ist. Denn diese filtern aus Sonnenlicht die blauen und roten Farbanteile heraus. Um die Zusammensetzung des Lichts zu erfassen, besitzen Pflanzen lichtempfindliche Proteine, so genannte Photorezeptoren.

Für den roten Bereich des Farbspektrums sind Phytochrome zuständig, die eine maximale Absorption in hellrotem Licht aufweisen. Allerdings zeigte bereits vor einigen Jahrzehnten der Freiburger Biologe Prof. Dr. Karl-Max Hartmann, dass die maximale Wirksamkeit für die Hemmung des Streckungswachstums bei Pflanzen im Dunkelrot-Bereich des Lichtspektrums liegt. Die Ursache dafür sowie für die starke Abhängigkeit des Streckungswachstums von der Lichtintensität konnte bisher jedoch nicht geklärt werden.

In einer Kombination aus Theorie und Experimenten klärten Forscherinnen und Forscher der Universität Freiburg und der Universität Tübingen dieses Phänomen, das als Hochintensitätsreaktion (HIR) bezeichnet wird, jetzt auf. Dr. Julia Rausenberger aus der Arbeitsgruppe von Dr. Christian Fleck vom Zentrum für Biosystemanalyse (ZBSA) und Dr. Andreas Hiltbrunner vom Zentrum für Molekularbiologie der Pflanzen (ZMBP) der Universität Tübingen präsentieren ihre Ergebnisse in der aktuellen Ausgabe der Fachzeitschrift CELL.

Die Ergebnisse der Studie zeigen, wie höhere Pflanzen im Laufe der Evolution die Fähigkeit erworben haben, auf dunkelrotes Licht zu reagieren, obwohl sie einen Photorezeptor benutzen, der eigentlich seine größte Absorption im hellroten Licht zeigt.

Bereits 1975 lieferte Prof. Dr. Eberhard Schäfer vom Institut für Biologie II und Zentrum für biologische Signalstudien (BIOSS) eine erste theoretische Deutung für die HIR. Dennoch blieb der prinzipielle Mechanismus unverstanden. In der jetzt in CELL erscheinenden Arbeit werden die experimentellen und theoretischen Ansätze zusammengeführt, um zu einer Erklärung der HIR zu kommen. Hiltbrunner konnte dabei zeigen, dass für den Kerntransport von Phytochrom A zwei Helfer-Proteine notwendig sind. Im Zellkern lösen sie sich vom Photorezeptor und wandern zurück in das Zytoplasma, um dort für weiteren Transport zur Verfügung zu stehen. Aufbauend auf diesen experimentellen Befunden ließ sich ein mathematisches Reaktionsmodell für die Wirkung von Phytochrom A aufstellen. Daran anschließend musste herausgefunden werden, ob dieses Modell die HIR widerspiegelt und welche Reaktionen grundlegend sind, damit Phytochrom A im dunkelroten Licht wirksam ist. Rausenberger überprüfte mittels Computersimulationen das Verhalten des Reaktionsmodells für insgesamt eine Millionen Kombinationen von Konstanten. Sie stellte fest, dass das Reaktionsmodell die HIR umfassend beschreibt.

Titel der Originalveröffentlichung: Julia Rausenberger, Anke Tscheuschler, Wiebke Nordmeier, Florian Wüst, Jens Timmer, Eberhard Schäfer, Christian Fleck, and Andreas Hiltbrunner. (2011). Photoconversion and nuclear trafficking cycles determine phytochrome A’s response profile to far-red light. CELL 146, 5

Kontakt:
Dr. Christian Fleck
Zentrum für Biosystemanalyse
Universität Freiburg
Tel.: 0761/203-97198
E-Mail: christian.fleck@fdm.uni-freiburg.de
Dr. Andreas Hiltbrunner
Zentrum für Molekularbiologie der Pflanzen
Universität Tübingen
Tel.: 07071/29-73230
E-Mail: andreas.hiltbrunner@zmbp.uni-tuebingen.de

Rudolf-Werner Dreier | Uni Freiburg
Weitere Informationen:
http://www.uni-freiburg.de
http://www.uni-tuebingen.de

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Zebras: Immer der Erinnerung nach
24.05.2017 | Senckenberg Forschungsinstitut und Naturmuseen

nachricht Wichtiges Regulator-Gen für die Bildung der Herzklappen entdeckt
24.05.2017 | Universität Basel

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Orientierungslauf im Mikrokosmos

Physiker der Universität Würzburg können auf Knopfdruck einzelne Lichtteilchen erzeugen, die einander ähneln wie ein Ei dem anderen. Zwei neue Studien zeigen nun, welches Potenzial diese Methode hat.

Der Quantencomputer beflügelt seit Jahrzehnten die Phantasie der Wissenschaftler: Er beruht auf grundlegend anderen Phänomenen als ein herkömmlicher Rechner....

Im Focus: A quantum walk of photons

Physicists from the University of Würzburg are capable of generating identical looking single light particles at the push of a button. Two new studies now demonstrate the potential this method holds.

The quantum computer has fuelled the imagination of scientists for decades: It is based on fundamentally different phenomena than a conventional computer....

Im Focus: Tumult im trägen Elektronen-Dasein

Ein internationales Team von Physikern hat erstmals das Streuverhalten von Elektronen in einem nichtleitenden Material direkt beobachtet. Ihre Erkenntnisse könnten der Strahlungsmedizin zu Gute kommen.

Elektronen in nichtleitenden Materialien könnte man Trägheit nachsagen. In der Regel bleiben sie an ihren Plätzen, tief im Inneren eines solchen Atomverbunds....

Im Focus: Turmoil in sluggish electrons’ existence

An international team of physicists has monitored the scattering behaviour of electrons in a non-conducting material in real-time. Their insights could be beneficial for radiotherapy.

We can refer to electrons in non-conducting materials as ‘sluggish’. Typically, they remain fixed in a location, deep inside an atomic composite. It is hence...

Im Focus: Hauchdünne magnetische Materialien für zukünftige Quantentechnologien entwickelt

Zweidimensionale magnetische Strukturen gelten als vielversprechendes Material für neuartige Datenspeicher, da sich die magnetischen Eigenschaften einzelner Molekülen untersuchen und verändern lassen. Forscher haben nun erstmals einen hauchdünnen Ferrimagneten hergestellt, bei dem sich Moleküle mit verschiedenen magnetischen Zentren auf einer Goldfläche selbst zu einem Schachbrettmuster anordnen. Dies berichten Wissenschaftler des Swiss Nanoscience Institutes der Universität Basel und des Paul Scherrer Institutes in der Wissenschaftszeitschrift «Nature Communications».

Ferrimagneten besitzen zwei magnetische Zentren, deren Magnetismus verschieden stark ist und in entgegengesetzte Richtungen zeigt. Zweidimensionale, quasi...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Meeresschutz im Fokus: Das IASS auf der UN-Ozean-Konferenz in New York vom 5.-9. Juni

24.05.2017 | Veranstaltungen

Diabetes Kongress in Hamburg beginnt heute: Rund 6000 Teilnehmer werden erwartet

24.05.2017 | Veranstaltungen

Wissensbuffet: „All you can eat – and learn”

24.05.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Hochspannung für den Teilchenbeschleuniger der Zukunft

24.05.2017 | Physik Astronomie

3D-Graphen: Experiment an BESSY II zeigt, dass optische Eigenschaften einstellbar sind

24.05.2017 | Physik Astronomie

Optisches Messverfahren für Zellanalysen in Echtzeit - Ulmer Physiker auf der Messe "Sensor+Test"

24.05.2017 | Messenachrichten