Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Pflanzen statten ihre Organe unterschiedlich chemisch aus

14.11.2016

Wissenschaftler des Max-Planck-Instituts für chemische Ökologie und der Universität Heidelberg weisen mit Hilfe von computerbasierten Metabolomanalysen die hohe gewebespezifische Vielfalt von Stoffwechselprodukten in Pflanzen nach.

Wissenschaftlern des Max-Planck-Instituts für chemische Ökologie und der Universität Heidelberg ist es jetzt gelungen, die Vielfalt und unterschiedliche Anreicherung von chemischen Substanzen in Pflanzengeweben der ökologischen Modellpflanze Nicotiana attenuata aufzuklären.


Tabakblüte: In den pollenproduzierenden Staubbeuteln ist die Gesamtheit der Stoffwechselprodukte spezifischer und weniger vielfältig als in allen anderen untersuchten Pflanzenorganen.

Danny Kessler / Max-Planck-Institut für chemische Ökologie

Die Ergebnisse wurden mit Hilfe computerbasierter Metabolomanalysen und informationstheoretischen Modellen erzielt. Der eigens für die Studie entwickelte Forschungsansatz ermöglicht die Erforschung des Pflanzenstoffwechsels auf der Ebene einzelner Organe.

Somit können die vielfältigen Pflanzenstoffe effizienter erfasst und die Gene, die ihre Biosynthese und Regulierung steuern, schneller identifiziert werden. (Proceedings of the National Academy of Sciences of the United States of America, November 2016, DOI 10.1073/pnas.1610218113)

Pflanzen sind Meister der organischen Chemie. Sie sind in der Lage, sehr komplexe Mischungen aus unterschiedlichsten chemische Substanzen zu produzieren. Dabei ist die Bildung und Anreicherung dieser sekundären Pflanzenstoffe physiologisch an die Bedarfe in den jeweiligen Pflanzenorganen angepasst.

Ein Team von Wissenschaftlern um Emmanuel Gaquerel von der Universität Heidelberg und Ian Baldwin vom Max-Planck-Institut für chemische Ökologie in Jena hat das Metabolom, also die Gesamtheit der Stoffwechselprodukte, der ökologischen Modellpflanze Kojotentabak (Nicotiana attenuata) jetzt genauer unter die Lupe genommen.

Im Mittelpunkt der Forschung standen dabei die Fragen, welche Pflanzenorgane charakteristische Profile ihrer Stoffwechselprodukte aufweisen, welche chemischen Pflanzenstoffe sich vor allem lokal begrenzt in bestimmten Organgeweben anreichern, und wie diese Informationen dazu beitragen können, die für die Bildung dieser Stoffe verantwortlichen Gene besser identifizieren zu können.

Um diese Fragen zu beantworten, machten sich die Forscher den noch jungen Forschungszweig der Metabolomik zu Nutze und entwickelten neue computergestützte Methoden für die Auswertung massenspektrometrischer Substanz-Analysen. Ziel der Metabolom-Forschung ist es, alle Stoffwechselprodukte eines Organismus und deren Wechselwirkungen zu identifizieren und zu quantifizieren.

„Wir haben einen Arbeitsablauf entwickelt, der es ermöglicht, die Massenspektren einzelner Substanzen schnell so anzuordnen, dass deren Identität vorhergesagt werden kann“, erläutert Emmanuel Gaquerel, der Leiter der Studie. „Computergestützte Metabolomik fasst alle bioinformatischen Ansätze zusammen, die Rückschlüsse erlauben, was die Beschreibung unbekannter chemischer Substanzen in Pflanzen auf der Basis einer Vielzahl komplexer metabolomischer Daten betrifft.“

Für die Studie untersuchten die Wissenschaftler die Stoffwechsel-Profile von 14 unterschiedlichen Teilen des Kojotentabaks, darunter, Blütenorgane, Stängel, Blätter, Samen und Wurzeln. „Wir hatten erwartet, dass sich die Stoffwechselprofile von Blütengewebe deutlich von denen anderer Pflanzenteile unterscheiden. Innerhalb der Blüten gab es allerdings ebenfalls große Unterschiede. Überrascht hat uns insbesondere, wie hoch spezialisiert die sekundären Pflanzenstoffe in den Staubbeuteln der Tabakblüten waren“, berichtet Dapeng Li, Erstautor der Studie und Doktorand am Max-Planck-Institut.

Die Staubbeutel gehören zu den Staubblättern, die als die männlichen Teile der Blüte betrachtet werden. An den Staubbeuteln befinden sich die Pollensäcke, in denen der Pollen gebildet wird. Staubbeutel enthalten besondere Phenolderivate, die unter anderem in der Pollenhaut zu finden sind. Die Biosynthese dieser Phenolderivate und ihre Anreicherung in den Staubbeuteln sind maßgeblich für das besondere Stoffwechselprofil der männlichen Fortpflanzungsorgane verantwortlich.

Durch die Neueinführung informationstheoretischer Ansätze zur Erfassung der Stoffwechselvielfalt konnten die Forscher auch neue Erkenntnisse über die Funktion der einzelnen Stoffe erzielen. Die gewebespezifische Vielfalt von Stoffen wird dabei als Information aufgefasst, die wie jede andere Information statistisch ausgewertet werden kann. Um Stoffwechselfunktionen einzelnen Genen zuordnen zu können, erstellten die Wissenschaftler einen Atlas, auf dem sowohl die Gene, als auch die Stoffwechselprodukte abgebildet waren, die ein ähnliches Aktivierungsmuster in einzelnen Geweben des Kojoktentabaks aufwiesen.

Auf der Basis dieses Atlas konnten sie mögliche Kandidaten unter den Genen identifizieren, die bei der Biosynthese bestimmter Stoffe eine Rolle spielen könnten. Insbesondere bei Stoffen, deren Biosynthesewege noch nicht entschlüsselt sind, ist dieser Ansatz zukunftsweisend und leitet einen großen Beitrag zur weiteren Erforschung des pflanzlichen Sekundärstoffwechsels.

Ian Baldwin, Leiter der Abteilung Molekulare Ökologie am Jenaer Max-Planck-Institut, hat grundlegenden Anteil daran, dass der Kojotentabak ein wichtiger Modellorganismus für die Erforschung von Wechselwirkungen zwischen Pflanzen und ihrer Umwelt wurde. „Pflanzen haben ein ausgeklügeltes System, wie sie ihre Stoffwechselprodukte gewebe- und organspezifisch anreichern. Herauszufinden, wie sie das erreichen, ist von zentraler Bedeutung, wenn wir verstehen wollen, wie Pflanzen in der Natur überleben, “ fasst Baldwin die Ergebnisse der neuen Studie zusammen. [AO/KG]

Originalveröffentlichung:
Li, D., Heiling, S., Baldwin, I. T., Gaquerel, E. (2016). Illuminating a plant’s tissue-specific metabolic diversity using computational metabolomics and information theory. Proceedings of the National Academy of Sciences of the United States of America, Early Edition, DOI: 10.1073/pnas.1610218113
http://dx.doi.org/10.1073/pnas.1610218113

Weitere Informationen:
Prof. Dr. Ian T. Baldwin, Max-Planck-Institut für chemische Ökologie, Hans-Knöll-Str. 8, 07743 Jena, +49 3641 57-1101, E-Mail baldwin@ice.mpg.de

Dr. Emmanuel Gaquerel, Centre for Organismal Studies Heidelberg, Im Neuenheimer Feld 360, 69120 Heidelberg, +49 6221 54-5589, E-Mail emmanuel.gaquerel@cos.uni-heidelberg.de

Kontakt und Bildanfragen:
Angela Overmeyer M.A., Max-Planck-Institut für chemische Ökologie, Hans-Knöll-Str. 8, 07743 Jena, +49 3641 57-2110, E-Mail overmeyer@ice.mpg.de

Download von hochaufgelösten Fotos über http://www.ice.mpg.de/ext/downloads2016.html

Angela Overmeyer | Max-Planck-Institut für chemische Ökologie

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Nesseltiere steuern Bakterien fern
21.09.2017 | Christian-Albrechts-Universität zu Kiel

nachricht Die Immunabwehr gegen Pilzinfektionen ausrichten
21.09.2017 | Gesellschaft Deutscher Chemiker e.V.

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Hochpräzise Verschaltung in der Hirnrinde

Es ist noch immer weitgehend unbekannt, wie die komplexen neuronalen Netzwerke im Gehirn aufgebaut sind. Insbesondere in der Hirnrinde der Säugetiere, wo Sehen, Denken und Orientierung berechnet werden, sind die Regeln, nach denen die Nervenzellen miteinander verschaltet sind, nur unzureichend erforscht. Wissenschaftler um Moritz Helmstaedter vom Max-Planck-Institut für Hirnforschung in Frankfurt am Main und Helene Schmidt vom Bernstein-Zentrum der Humboldt-Universität in Berlin haben nun in dem Teil der Großhirnrinde, der für die räumliche Orientierung zuständig ist, ein überraschend präzises Verschaltungsmuster der Nervenzellen entdeckt.

Wie die Forscher in Nature berichten (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005), haben die...

Im Focus: Highly precise wiring in the Cerebral Cortex

Our brains house extremely complex neuronal circuits, whose detailed structures are still largely unknown. This is especially true for the so-called cerebral cortex of mammals, where among other things vision, thoughts or spatial orientation are being computed. Here the rules by which nerve cells are connected to each other are only partly understood. A team of scientists around Moritz Helmstaedter at the Frankfiurt Max Planck Institute for Brain Research and Helene Schmidt (Humboldt University in Berlin) have now discovered a surprisingly precise nerve cell connectivity pattern in the part of the cerebral cortex that is responsible for orienting the individual animal or human in space.

The researchers report online in Nature (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005) that synapses in...

Im Focus: Tiny lasers from a gallery of whispers

New technique promises tunable laser devices

Whispering gallery mode (WGM) resonators are used to make tiny micro-lasers, sensors, switches, routers and other devices. These tiny structures rely on a...

Im Focus: Wundermaterial Graphen: Gewölbt wie das Polster eines Chesterfield-Sofas

Graphen besitzt extreme Eigenschaften und ist vielseitig verwendbar. Mit einem Trick lassen sich sogar die Spins im Graphen kontrollieren. Dies gelang einem HZB-Team schon vor einiger Zeit: Die Physiker haben dafür eine Lage Graphen auf einem Nickelsubstrat aufgebracht und Goldatome dazwischen eingeschleust. Im Fachblatt 2D Materials zeigen sie nun, warum dies sich derartig stark auf die Spins auswirkt. Graphen kommt so auch als Material für künftige Informationstechnologien infrage, die auf der Verarbeitung von Spins als Informationseinheiten basieren.

Graphen ist wohl die exotischste Form von Kohlenstoff: Alle Atome sind untereinander nur in der Ebene verbunden und bilden ein Netz mit sechseckigen Maschen,...

Im Focus: Hochautomatisiertes Fahren bei Schnee und Regen: Robuste Warnehmung dank intelligentem Sensormix

Schlechte Sichtverhältnisse bei Regen oder Schnellfall sind für Menschen und hochautomatisierte Fahrzeuge eine große Herausforderung. Im europäischen Projekt RobustSENSE haben die Forscher von Fraunhofer FOKUS mit 14 Partnern, darunter die Daimler AG und die Robert Bosch GmbH, in den vergangenen zwei Jahren eine Softwareplattform entwickelt, auf der verschiedene Sensordaten von Kamera, Laser, Radar und weitere Informationen wie Wetterdaten kombiniert werden. Ziel ist, eine robuste und zuverlässige Wahrnehmung der Straßensituation unabhängig von der Komplexität und der Sichtverhältnisse zu gewährleisten. Nach der virtuellen Erprobung des Systems erfolgt nun der Praxistest, unter anderem auf dem Berliner Testfeld für hochautomatisiertes Fahren.

Starker Schneefall, ein Ball rollt auf die Fahrbahn: Selbst ein Mensch kann mitunter nicht schnell genug erkennen, ob dies ein gefährlicher Gegenstand oder...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Die Erde und ihre Bestandteile im Fokus

21.09.2017 | Veranstaltungen

23. Baltic Sea Forum am 11. und 12. Oktober nimmt Wirtschaftspartner Finnland in den Fokus

21.09.2017 | Veranstaltungen

6. Stralsunder IT-Sicherheitskonferenz im Zeichen von Smart Home

21.09.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

OLED auf hauchdünnem Edelstahl

21.09.2017 | Messenachrichten

Weniger (Flug-)Lärm dank Mathematik

21.09.2017 | Physik Astronomie

In Zeiten des Klimawandels: Was die Farbe eines Sees über seinen Zustand verrät

21.09.2017 | Geowissenschaften