Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Pflanzen sparen Wasser per Ionenkanal

14.09.2010
Einen Ionenkanal, mit dem sich Pflanzen vor dem Austrocknen schützen, haben Würzburger und Züricher Forscher entdeckt. Seine Besonderheit: Er funktioniert ähnlich wie Ionenkanäle, die bei Menschen und Tieren auftreten.

In der Haut von Pflanzen befinden sich winzige Poren. Sie lassen Kohlendioxid für die Photosynthese in die Blätter gelangen und gleichzeitig Wasser in die Umgebung entweichen. Die optimale Regulation dieser Poren ist für Pflanzen darum sehr wichtig: Bei Trockenheit soll möglichst wenig Wasser verloren gehen, aber ausreichend Kohlendioxid einströmen.

Gebildet werden die Poren von jeweils zwei Schließzellen: Sind diese prall mit Ionen und Wasser gefüllt, klaffen sie auseinander und die Pore ist offen. Erschlaffen die Zellen, geht die Pore zu. Wie das funktioniert? Vereinfacht gesagt so: Auf ein Signal von außen öffnen sich in der Wand der Schließzellen Kanäle, durch die Ionen hinausfließen. Als Folge davon geben die Schließzellen auch Wasser ab und werden schlaff, wodurch sich die Pore zwischen den beiden Schließzellen verengt.

Publikation im „Plant Journal“

Es gibt verschiedene Kanäle, durch die Ionen aus Zellen hinaus gelangen. Ein langsam arbeitender Kanaltyp war bereits identifiziert; Details über einen schnell öffnenden Kanaltyp stellt nun erstmals die Zeitschrift „The Plant Journal“ vor.

Entdeckt wurde der Kanal von den Teams der Professoren Rainer Hedrich (Lehrstuhl für Molekulare Pflanzenphysiologie und Biophysik der Universität Würzburg) und Enrico Martinoia (Institut für Pflanzenbiologie der Universität Zürich). Eine Gruppe weltweit führender Pflanzenforscher, die „Faculty of 1000“, stuft ihre Arbeit als besonders lesenswert ein.

Mutante als Ausgangspunkt

Wie es zum Nachweis des schnellen Kanals kam? Martinoia, der früher an der Uni Würzburg tätig war, wurde bei seinen Forschungen auf eine Mutante der Modellpflanze Arabidopsis (Ackerschmalwand) aufmerksam: Sie kann die Poren in ihren Blättern nicht mehr optimal auf die Kohlendioxid-Konzentration einstellen. Martinoia wandte sich an den Schließzell-Experten Hedrich, um gemeinsam mit ihm mehr über den genetischen Defekt herauszufinden.

Hedrich: „Es stellte sich heraus, dass der Defekt einen Ionenkanal in den Schließzellen betrifft, der empfindlich auf Malat reagiert.“ Malat ist das Anion der Apfelsäure und eine wichtige Verbindung nicht nur im Pflanzenstoffwechsel. Für die Schließzellen hat es eine besondere Signalfunktion: Wenn photosynthetisch aktive Zellen kein Kohlendioxid mehr verarbeiten können – etwa, weil es dunkel wird – geben sie Malat ab. Damit signalisieren sie den Schließzellen, dass sie die Poren dicht machen können, um Wasser zu sparen.

„Über den Malat-Sensor des bis dato unbekannten Kanals stellen Pflanzen also die Porenweite auf die photosynthetische Leistungsfähigkeit der Blattzellen ein“, so der Würzburger Professor, der weltweit als Experte für pflanzliche Ionenkanäle anerkannt ist. Arabidopsis-Pflanzen, bei denen der Kanal fehlerhaft ist, schaffen diese Regulation nicht mehr. Ihre Poren bleiben auch bei hoher Malat-Konzentration offen und sogar dann, wenn das Stresshormon Abscisinsäure Wassermangel meldet.

Ionenkanal in Froscheiern charakterisiert

Nachdem die Gruppe von Martinoia bei der Arabidopsis-Mutante das defekte Gen aufgespürt hatte, wurde es in Würzburg kloniert und in Eier des Xenopus-Froschs übertragen. Binnen zwei Tagen hatten die millimetergroßen Eizellen so viele Pflanzenkanäle produziert und in ihre Hüllmembranen eingebaut, so dass die Wissenschaftler den Kanaltyp, dessen Verlust für die Fehlleistung der mutanten Schließzellen verantwortlich ist, mit elektrophysiologischen Messungen charakterisieren konnten.

Sonderstellung des neu entdeckten Kanals

Ionenkanäle spielen nicht nur bei Pflanzen eine Rolle, sondern auch bei der Weiterleitung der elektrischen Erregung in den Nerven- und Muskelzellen von Tieren. Der neu identifizierte Pflanzenkanal nimmt laut Hedrich hier eine Sonderstellung ein: „Wenn Malat an ihn bindet, öffnet er sich schon beim Ruhepotential der Membran und depolarisiert sie vorübergehend.“ Damit lege der Pflanzenkanal ein ähnliches elektrisches Verhalten an den Tag wie die Natriumkanäle in den Nervenzellen von Mensch und Tier.

Wie die Forschung weitergeht

„Jetzt gilt es zu verstehen, warum die beiden Kanäle sich funktionell so ähnlich sein können“, sagt Hedrich: Wie können derart unterschiedliche Gene eine gemeinsame Funktion begründen? Wie messen die Kanäle das elektrische Feld? Wie lässt dieser Schließzellkanal Anionen und sogar bevorzugt Malat durchtreten? Wie sieht der Malat-Schalter am Pflanzenkanal aus? Das sind die Fragen, welche die Wissenschaftler als nächstes angehen wollen.

“AtALMT12 represents an R-type anion channel required for stomatal movement in Arabidopsis guard cells”, Stefan Meyer, Patrick Mumm, Dennis Imes, Anne Endler, Barbara Weder, Khaled A.S. Al-Rasheid, Dietmar Geiger, Irene Marten, Enrico Martionia, and Rainer Hedrich, The Plant Journal (2010) 63, Seiten 1054-1062, doi: 10.1111/j.1365-313X.2010.04302.x

Kontakt
Prof. Dr. Rainer Hedrich, Julius-von-Sachs-Institut für Biowissenschaften der Universität Würzburg, T (0931) 31-86100, hedrich@botanik.uni-wuerzburg.de

Gunnar Bartsch | idw
Weitere Informationen:
http://www.uni-wuerzburg.de

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Der Bluthochdruckschalter in der Nebenniere
20.02.2018 | Forschungszentrum Jülich GmbH

nachricht Markierung für Krebsstammzellen
20.02.2018 | Gesellschaft Deutscher Chemiker e.V.

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Die Brücke, die sich dehnen kann

Brücken verformen sich, daher baut man normalerweise Dehnfugen ein. An der TU Wien wurde eine Technik entwickelt, die ohne Fugen auskommt und dadurch viel Geld und Aufwand spart.

Wer im Auto mit flottem Tempo über eine Brücke fährt, spürt es sofort: Meist rumpelt man am Anfang und am Ende der Brücke über eine Dehnfuge, die dort...

Im Focus: Eine Frage der Dynamik

Die meisten Ionenkanäle lassen nur eine ganz bestimmte Sorte von Ionen passieren, zum Beispiel Natrium- oder Kaliumionen. Daneben gibt es jedoch eine Reihe von Kanälen, die für beide Ionensorten durchlässig sind. Wie den Eiweißmolekülen das gelingt, hat jetzt ein Team um die Wissenschaftlerin Han Sun (FMP) und die Arbeitsgruppe von Adam Lange (FMP) herausgefunden. Solche nicht-selektiven Kanäle besäßen anders als die selektiven eine dynamische Struktur ihres Selektivitätsfilters, berichten die FMP-Forscher im Fachblatt Nature Communications. Dieser Filter könne zwei unterschiedliche Formen ausbilden, die jeweils nur eine der beiden Ionensorten passieren lassen.

Ionenkanäle sind für den Organismus von herausragender Bedeutung. Wenn zum Beispiel Sinnesreize wahrgenommen, ans Gehirn weitergeleitet und dort verarbeitet...

Im Focus: In best circles: First integrated circuit from self-assembled polymer

For the first time, a team of researchers at the Max-Planck Institute (MPI) for Polymer Research in Mainz, Germany, has succeeded in making an integrated circuit (IC) from just a monolayer of a semiconducting polymer via a bottom-up, self-assembly approach.

In the self-assembly process, the semiconducting polymer arranges itself into an ordered monolayer in a transistor. The transistors are binary switches used...

Im Focus: Erste integrierte Schaltkreise (IC) aus Plastik

Erstmals ist es einem Forscherteam am Max-Planck-Institut (MPI) für Polymerforschung in Mainz gelungen, einen integrierten Schaltkreis (IC) aus einer monomolekularen Schicht eines Halbleiterpolymers herzustellen. Dies erfolgte in einem sogenannten Bottom-Up-Ansatz durch einen selbstanordnenden Aufbau.

In diesem selbstanordnenden Aufbauprozess ordnen sich die Halbleiterpolymere als geordnete monomolekulare Schicht in einem Transistor an. Transistoren sind...

Im Focus: Quantenbits per Licht übertragen

Physiker aus Princeton, Konstanz und Maryland koppeln Quantenbits und Licht

Der Quantencomputer rückt näher: Neue Forschungsergebnisse zeigen das Potenzial von Licht als Medium, um Informationen zwischen sogenannten Quantenbits...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

Digitalisierung auf dem Prüfstand: Hochkarätige Konferenz zu Empowerment in der agilen Arbeitswelt

20.02.2018 | Veranstaltungen

Aachener Optiktage: Expertenwissen in zwei Konferenzen für die Glas- und Kunststoffoptikfertigung

19.02.2018 | Veranstaltungen

Konferenz "Die Mobilität von morgen gestalten"

19.02.2018 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Highlight der Halbleiter-Forschung

20.02.2018 | Physik Astronomie

Wie verbessert man die Nahtqualität lasergeschweißter Textilien?

20.02.2018 | Materialwissenschaften

Der Bluthochdruckschalter in der Nebenniere

20.02.2018 | Biowissenschaften Chemie

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics