Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Pflanzen sparen Wasser per Ionenkanal

14.09.2010
Einen Ionenkanal, mit dem sich Pflanzen vor dem Austrocknen schützen, haben Würzburger und Züricher Forscher entdeckt. Seine Besonderheit: Er funktioniert ähnlich wie Ionenkanäle, die bei Menschen und Tieren auftreten.

In der Haut von Pflanzen befinden sich winzige Poren. Sie lassen Kohlendioxid für die Photosynthese in die Blätter gelangen und gleichzeitig Wasser in die Umgebung entweichen. Die optimale Regulation dieser Poren ist für Pflanzen darum sehr wichtig: Bei Trockenheit soll möglichst wenig Wasser verloren gehen, aber ausreichend Kohlendioxid einströmen.

Gebildet werden die Poren von jeweils zwei Schließzellen: Sind diese prall mit Ionen und Wasser gefüllt, klaffen sie auseinander und die Pore ist offen. Erschlaffen die Zellen, geht die Pore zu. Wie das funktioniert? Vereinfacht gesagt so: Auf ein Signal von außen öffnen sich in der Wand der Schließzellen Kanäle, durch die Ionen hinausfließen. Als Folge davon geben die Schließzellen auch Wasser ab und werden schlaff, wodurch sich die Pore zwischen den beiden Schließzellen verengt.

Publikation im „Plant Journal“

Es gibt verschiedene Kanäle, durch die Ionen aus Zellen hinaus gelangen. Ein langsam arbeitender Kanaltyp war bereits identifiziert; Details über einen schnell öffnenden Kanaltyp stellt nun erstmals die Zeitschrift „The Plant Journal“ vor.

Entdeckt wurde der Kanal von den Teams der Professoren Rainer Hedrich (Lehrstuhl für Molekulare Pflanzenphysiologie und Biophysik der Universität Würzburg) und Enrico Martinoia (Institut für Pflanzenbiologie der Universität Zürich). Eine Gruppe weltweit führender Pflanzenforscher, die „Faculty of 1000“, stuft ihre Arbeit als besonders lesenswert ein.

Mutante als Ausgangspunkt

Wie es zum Nachweis des schnellen Kanals kam? Martinoia, der früher an der Uni Würzburg tätig war, wurde bei seinen Forschungen auf eine Mutante der Modellpflanze Arabidopsis (Ackerschmalwand) aufmerksam: Sie kann die Poren in ihren Blättern nicht mehr optimal auf die Kohlendioxid-Konzentration einstellen. Martinoia wandte sich an den Schließzell-Experten Hedrich, um gemeinsam mit ihm mehr über den genetischen Defekt herauszufinden.

Hedrich: „Es stellte sich heraus, dass der Defekt einen Ionenkanal in den Schließzellen betrifft, der empfindlich auf Malat reagiert.“ Malat ist das Anion der Apfelsäure und eine wichtige Verbindung nicht nur im Pflanzenstoffwechsel. Für die Schließzellen hat es eine besondere Signalfunktion: Wenn photosynthetisch aktive Zellen kein Kohlendioxid mehr verarbeiten können – etwa, weil es dunkel wird – geben sie Malat ab. Damit signalisieren sie den Schließzellen, dass sie die Poren dicht machen können, um Wasser zu sparen.

„Über den Malat-Sensor des bis dato unbekannten Kanals stellen Pflanzen also die Porenweite auf die photosynthetische Leistungsfähigkeit der Blattzellen ein“, so der Würzburger Professor, der weltweit als Experte für pflanzliche Ionenkanäle anerkannt ist. Arabidopsis-Pflanzen, bei denen der Kanal fehlerhaft ist, schaffen diese Regulation nicht mehr. Ihre Poren bleiben auch bei hoher Malat-Konzentration offen und sogar dann, wenn das Stresshormon Abscisinsäure Wassermangel meldet.

Ionenkanal in Froscheiern charakterisiert

Nachdem die Gruppe von Martinoia bei der Arabidopsis-Mutante das defekte Gen aufgespürt hatte, wurde es in Würzburg kloniert und in Eier des Xenopus-Froschs übertragen. Binnen zwei Tagen hatten die millimetergroßen Eizellen so viele Pflanzenkanäle produziert und in ihre Hüllmembranen eingebaut, so dass die Wissenschaftler den Kanaltyp, dessen Verlust für die Fehlleistung der mutanten Schließzellen verantwortlich ist, mit elektrophysiologischen Messungen charakterisieren konnten.

Sonderstellung des neu entdeckten Kanals

Ionenkanäle spielen nicht nur bei Pflanzen eine Rolle, sondern auch bei der Weiterleitung der elektrischen Erregung in den Nerven- und Muskelzellen von Tieren. Der neu identifizierte Pflanzenkanal nimmt laut Hedrich hier eine Sonderstellung ein: „Wenn Malat an ihn bindet, öffnet er sich schon beim Ruhepotential der Membran und depolarisiert sie vorübergehend.“ Damit lege der Pflanzenkanal ein ähnliches elektrisches Verhalten an den Tag wie die Natriumkanäle in den Nervenzellen von Mensch und Tier.

Wie die Forschung weitergeht

„Jetzt gilt es zu verstehen, warum die beiden Kanäle sich funktionell so ähnlich sein können“, sagt Hedrich: Wie können derart unterschiedliche Gene eine gemeinsame Funktion begründen? Wie messen die Kanäle das elektrische Feld? Wie lässt dieser Schließzellkanal Anionen und sogar bevorzugt Malat durchtreten? Wie sieht der Malat-Schalter am Pflanzenkanal aus? Das sind die Fragen, welche die Wissenschaftler als nächstes angehen wollen.

“AtALMT12 represents an R-type anion channel required for stomatal movement in Arabidopsis guard cells”, Stefan Meyer, Patrick Mumm, Dennis Imes, Anne Endler, Barbara Weder, Khaled A.S. Al-Rasheid, Dietmar Geiger, Irene Marten, Enrico Martionia, and Rainer Hedrich, The Plant Journal (2010) 63, Seiten 1054-1062, doi: 10.1111/j.1365-313X.2010.04302.x

Kontakt
Prof. Dr. Rainer Hedrich, Julius-von-Sachs-Institut für Biowissenschaften der Universität Würzburg, T (0931) 31-86100, hedrich@botanik.uni-wuerzburg.de

Gunnar Bartsch | idw
Weitere Informationen:
http://www.uni-wuerzburg.de

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Der Evolutionsvorteil der Strandschnecke
28.03.2017 | Gesellschaft Deutscher Chemiker e.V.

nachricht Mobile Goldfinger
28.03.2017 | Gesellschaft Deutscher Chemiker e.V.

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Entwicklung miniaturisierter Lichtmikroskope - „ChipScope“ will ins Innere lebender Zellen blicken

Das Institut für Halbleitertechnik und das Institut für Physikalische und Theoretische Chemie, beide Mitglieder des Laboratory for Emerging Nanometrology (LENA), der Technischen Universität Braunschweig, sind Partner des kürzlich gestarteten EU-Forschungsprojektes ChipScope. Ziel ist es, ein neues, extrem kleines Lichtmikroskop zu entwickeln. Damit soll das Innere lebender Zellen in Echtzeit beobachtet werden können. Sieben Institute in fünf europäischen Ländern beteiligen sich über die nächsten vier Jahre an diesem technologisch anspruchsvollen Projekt.

Die zukünftigen Einsatzmöglichkeiten des neu zu entwickelnden und nur wenige Millimeter großen Mikroskops sind äußerst vielfältig. Die Projektpartner haben...

Im Focus: A Challenging European Research Project to Develop New Tiny Microscopes

The Institute of Semiconductor Technology and the Institute of Physical and Theoretical Chemistry, both members of the Laboratory for Emerging Nanometrology (LENA), at Technische Universität Braunschweig are partners in a new European research project entitled ChipScope, which aims to develop a completely new and extremely small optical microscope capable of observing the interior of living cells in real time. A consortium of 7 partners from 5 countries will tackle this issue with very ambitious objectives during a four-year research program.

To demonstrate the usefulness of this new scientific tool, at the end of the project the developed chip-sized microscope will be used to observe in real-time...

Im Focus: Das anwachsende Ende der Ordnung

Physiker aus Konstanz weisen sogenannte Mermin-Wagner-Fluktuationen experimentell nach

Ein Kristall besteht aus perfekt angeordneten Teilchen, aus einer lückenlos symmetrischen Atomstruktur – dies besagt die klassische Definition aus der Physik....

Im Focus: Wegweisende Erkenntnisse für die Biomedizin: NAD⁺ hilft bei Reparatur geschädigter Erbinformationen

Eine internationale Forschergruppe mit dem Bayreuther Biochemiker Prof. Dr. Clemens Steegborn präsentiert in 'Science' neue, für die Biomedizin wegweisende Forschungsergebnisse zur Rolle des Moleküls NAD⁺ bei der Korrektur von Schäden am Erbgut.

Die Zellen von Menschen und Tieren können Schäden an der DNA, dem Träger der Erbinformation, bis zu einem gewissen Umfang selbst reparieren. Diese Fähigkeit...

Im Focus: Designer-Proteine falten DNA

Florian Praetorius und Prof. Hendrik Dietz von der Technischen Universität München (TUM) haben eine neue Methode entwickelt, mit deren Hilfe sie definierte Hybrid-Strukturen aus DNA und Proteinen aufbauen können. Die Methode eröffnet Möglichkeiten für die zellbiologische Grundlagenforschung und für die Anwendung in Medizin und Biotechnologie.

Desoxyribonukleinsäure – besser bekannt unter der englischen Abkürzung DNA – ist die Trägerin unserer Erbinformation. Für Prof. Hendrik Dietz und Florian...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Industriearbeitskreis »Prozesskontrolle in der Lasermaterialbearbeitung ICPC« lädt nach Aachen ein

28.03.2017 | Veranstaltungen

Neue Methoden für zuverlässige Mikroelektronik: Internationale Experten treffen sich in Halle

28.03.2017 | Veranstaltungen

Wie Menschen wachsen

27.03.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Von Agenten, Algorithmen und unbeliebten Wochentagen

28.03.2017 | Unternehmensmeldung

Hannover Messe: Elektrische Maschinen in neuen Dimensionen

28.03.2017 | HANNOVER MESSE

Dimethylfumarat – eine neue Behandlungsoption für Lymphome

28.03.2017 | Medizin Gesundheit