Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Pflanzen sparen Wasser per Ionenkanal

14.09.2010
Einen Ionenkanal, mit dem sich Pflanzen vor dem Austrocknen schützen, haben Würzburger und Züricher Forscher entdeckt. Seine Besonderheit: Er funktioniert ähnlich wie Ionenkanäle, die bei Menschen und Tieren auftreten.

In der Haut von Pflanzen befinden sich winzige Poren. Sie lassen Kohlendioxid für die Photosynthese in die Blätter gelangen und gleichzeitig Wasser in die Umgebung entweichen. Die optimale Regulation dieser Poren ist für Pflanzen darum sehr wichtig: Bei Trockenheit soll möglichst wenig Wasser verloren gehen, aber ausreichend Kohlendioxid einströmen.

Gebildet werden die Poren von jeweils zwei Schließzellen: Sind diese prall mit Ionen und Wasser gefüllt, klaffen sie auseinander und die Pore ist offen. Erschlaffen die Zellen, geht die Pore zu. Wie das funktioniert? Vereinfacht gesagt so: Auf ein Signal von außen öffnen sich in der Wand der Schließzellen Kanäle, durch die Ionen hinausfließen. Als Folge davon geben die Schließzellen auch Wasser ab und werden schlaff, wodurch sich die Pore zwischen den beiden Schließzellen verengt.

Publikation im „Plant Journal“

Es gibt verschiedene Kanäle, durch die Ionen aus Zellen hinaus gelangen. Ein langsam arbeitender Kanaltyp war bereits identifiziert; Details über einen schnell öffnenden Kanaltyp stellt nun erstmals die Zeitschrift „The Plant Journal“ vor.

Entdeckt wurde der Kanal von den Teams der Professoren Rainer Hedrich (Lehrstuhl für Molekulare Pflanzenphysiologie und Biophysik der Universität Würzburg) und Enrico Martinoia (Institut für Pflanzenbiologie der Universität Zürich). Eine Gruppe weltweit führender Pflanzenforscher, die „Faculty of 1000“, stuft ihre Arbeit als besonders lesenswert ein.

Mutante als Ausgangspunkt

Wie es zum Nachweis des schnellen Kanals kam? Martinoia, der früher an der Uni Würzburg tätig war, wurde bei seinen Forschungen auf eine Mutante der Modellpflanze Arabidopsis (Ackerschmalwand) aufmerksam: Sie kann die Poren in ihren Blättern nicht mehr optimal auf die Kohlendioxid-Konzentration einstellen. Martinoia wandte sich an den Schließzell-Experten Hedrich, um gemeinsam mit ihm mehr über den genetischen Defekt herauszufinden.

Hedrich: „Es stellte sich heraus, dass der Defekt einen Ionenkanal in den Schließzellen betrifft, der empfindlich auf Malat reagiert.“ Malat ist das Anion der Apfelsäure und eine wichtige Verbindung nicht nur im Pflanzenstoffwechsel. Für die Schließzellen hat es eine besondere Signalfunktion: Wenn photosynthetisch aktive Zellen kein Kohlendioxid mehr verarbeiten können – etwa, weil es dunkel wird – geben sie Malat ab. Damit signalisieren sie den Schließzellen, dass sie die Poren dicht machen können, um Wasser zu sparen.

„Über den Malat-Sensor des bis dato unbekannten Kanals stellen Pflanzen also die Porenweite auf die photosynthetische Leistungsfähigkeit der Blattzellen ein“, so der Würzburger Professor, der weltweit als Experte für pflanzliche Ionenkanäle anerkannt ist. Arabidopsis-Pflanzen, bei denen der Kanal fehlerhaft ist, schaffen diese Regulation nicht mehr. Ihre Poren bleiben auch bei hoher Malat-Konzentration offen und sogar dann, wenn das Stresshormon Abscisinsäure Wassermangel meldet.

Ionenkanal in Froscheiern charakterisiert

Nachdem die Gruppe von Martinoia bei der Arabidopsis-Mutante das defekte Gen aufgespürt hatte, wurde es in Würzburg kloniert und in Eier des Xenopus-Froschs übertragen. Binnen zwei Tagen hatten die millimetergroßen Eizellen so viele Pflanzenkanäle produziert und in ihre Hüllmembranen eingebaut, so dass die Wissenschaftler den Kanaltyp, dessen Verlust für die Fehlleistung der mutanten Schließzellen verantwortlich ist, mit elektrophysiologischen Messungen charakterisieren konnten.

Sonderstellung des neu entdeckten Kanals

Ionenkanäle spielen nicht nur bei Pflanzen eine Rolle, sondern auch bei der Weiterleitung der elektrischen Erregung in den Nerven- und Muskelzellen von Tieren. Der neu identifizierte Pflanzenkanal nimmt laut Hedrich hier eine Sonderstellung ein: „Wenn Malat an ihn bindet, öffnet er sich schon beim Ruhepotential der Membran und depolarisiert sie vorübergehend.“ Damit lege der Pflanzenkanal ein ähnliches elektrisches Verhalten an den Tag wie die Natriumkanäle in den Nervenzellen von Mensch und Tier.

Wie die Forschung weitergeht

„Jetzt gilt es zu verstehen, warum die beiden Kanäle sich funktionell so ähnlich sein können“, sagt Hedrich: Wie können derart unterschiedliche Gene eine gemeinsame Funktion begründen? Wie messen die Kanäle das elektrische Feld? Wie lässt dieser Schließzellkanal Anionen und sogar bevorzugt Malat durchtreten? Wie sieht der Malat-Schalter am Pflanzenkanal aus? Das sind die Fragen, welche die Wissenschaftler als nächstes angehen wollen.

“AtALMT12 represents an R-type anion channel required for stomatal movement in Arabidopsis guard cells”, Stefan Meyer, Patrick Mumm, Dennis Imes, Anne Endler, Barbara Weder, Khaled A.S. Al-Rasheid, Dietmar Geiger, Irene Marten, Enrico Martionia, and Rainer Hedrich, The Plant Journal (2010) 63, Seiten 1054-1062, doi: 10.1111/j.1365-313X.2010.04302.x

Kontakt
Prof. Dr. Rainer Hedrich, Julius-von-Sachs-Institut für Biowissenschaften der Universität Würzburg, T (0931) 31-86100, hedrich@botanik.uni-wuerzburg.de

Gunnar Bartsch | idw
Weitere Informationen:
http://www.uni-wuerzburg.de

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Diabetesforschung: Neuer Mechanismus zur Regulation des Insulin-Stoffwechsels gefunden
06.12.2016 | Universität Osnabrück

nachricht Was nach der Befruchtung im Zellkern passiert
06.12.2016 | Helmholtz Zentrum München - Deutsches Forschungszentrum für Gesundheit und Umwelt

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Gravitationswellen als Sensor für Dunkle Materie

Die mit der Entdeckung von Gravitationswellen entstandene neue Disziplin der Gravitationswellen-Astronomie bekommt eine weitere Aufgabe: die Suche nach Dunkler Materie. Diese könnte aus einem Bose-Einstein-Kondensat sehr leichter Teilchen bestehen. Wie Rechnungen zeigen, würden Gravitationswellen gebremst, wenn sie durch derartige Dunkle Materie laufen. Dies führt zu einer Verspätung von Gravitationswellen relativ zu Licht, die bereits mit den heutigen Detektoren messbar sein sollte.

Im Universum muss es gut fünfmal mehr unsichtbare als sichtbare Materie geben. Woraus diese Dunkle Materie besteht, ist immer noch unbekannt. Die...

Im Focus: Significantly more productivity in USP lasers

In recent years, lasers with ultrashort pulses (USP) down to the femtosecond range have become established on an industrial scale. They could advance some applications with the much-lauded “cold ablation” – if that meant they would then achieve more throughput. A new generation of process engineering that will address this issue in particular will be discussed at the “4th UKP Workshop – Ultrafast Laser Technology” in April 2017.

Even back in the 1990s, scientists were comparing materials processing with nanosecond, picosecond and femtosesecond pulses. The result was surprising:...

Im Focus: Wie sich Zellen gegen Salmonellen verteidigen

Bioinformatiker der Goethe-Universität haben das erste mathematische Modell für einen zentralen Verteidigungsmechanismus der Zelle gegen das Bakterium Salmonella entwickelt. Sie können ihren experimentell arbeitenden Kollegen damit wertvolle Anregungen zur Aufklärung der beteiligten Signalwege geben.

Jedes Jahr sind Salmonellen weltweit für Millionen von Infektionen und tausende Todesfälle verantwortlich. Die Körperzellen können sich aber gegen die...

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Greifswalder Forscher dringen mit superauflösendem Mikroskop in zellulären Mikrokosmos ein

Das Institut für Anatomie und Zellbiologie weiht am Montag, 05.12.2016, mit einem wissenschaftlichen Symposium das erste Superresolution-Mikroskop in Greifswald ein. Das Forschungsmikroskop wurde von der Deutschen Forschungsgemeinschaft (DFG) und dem Land Mecklenburg-Vorpommern finanziert. Nun können die Greifswalder Wissenschaftler Strukturen bis zu einer Größe von einigen Millionstel Millimetern mittels Laserlicht sichtbar machen.

Weit über hundert Jahre lang galt die von Ernst Abbe 1873 publizierte Theorie zur Auflösungsgrenze von Lichtmikroskopen als ein in Stein gemeißeltes Gesetz....

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Wie aus reinen Daten ein verständliches Bild entsteht

05.12.2016 | Veranstaltungen

Von „Coopetition“ bis „Digitale Union“ – Die Fertigungsindustrien im digitalen Wandel

02.12.2016 | Veranstaltungen

Experten diskutieren Perspektiven schrumpfender Regionen

01.12.2016 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Weiterbildung zu statistischen Methoden in der Versuchsplanung und -auswertung

06.12.2016 | Seminare Workshops

Bund fördert Entwicklung sicherer Schnellladetechnik für Hochleistungsbatterien mit 2,5 Millionen

06.12.2016 | Förderungen Preise

Innovationen für eine nachhaltige Forstwirtschaft

06.12.2016 | Agrar- Forstwissenschaften