Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Wie Pflanzen aus dem Schatten Größerer treten

20.12.2010
Die molekularen Grundlagen der Schattenvermeidungsreaktion
PNAS berichtet über Studie mit RUB-Beteiligung

Wenn Pflanzen beim Konkurrenzkampf ums Licht ins Hintertreffen geraten, weil Größere sie überwachsen, steuern sie gegen: Sie bilden schneller längere Triebe aus und recken ihre Blätter zur Sonne. Die molekularen Grundlagen dieses sog. Schattenvermeidungssyndroms waren bislang ungeklärt. Forscher aus Utrecht (NL) und Bochum konnten jetzt einen Steuerungsweg aufklären.

Das Pflanzenhormon Auxin, das bei dem Anpassungsprozess eine wichtige Rolle spielt, sammelt sich dank eines speziellen Exportproteins (PIN3) in den äußeren Zellschichten der Pflanze an, die somit schneller wachsen. Die Forschergruppe, zu der der Bochumer Pflanzenhormonspezialist Prof. Dr. Stephan Pollmann gehört, berichtet in der aktuellen Ausgabe der Proceedings of the National Academy of Science PNAS.

Plötzlich im Schatten: Pflanzen steuern gegen

Pflanzen wachsen häufig in komplexen Ökosystemen, was die Gefahr birgt, von benachbarten Pflanzen überwachsen zu werden und im Schatten der Größeren zu stehen. Um dieser Situation entgegenzuwirken und ihre Konkurrenzfähigkeit zu steigern, besitzen Pflanzen eine Reihe von Anpassungsmechanismen, die es ihnen erlauben, konkurrierende Nachbarn wahrzunehmen und flexibel zu reagieren. Unverzichtbar ist dafür die stetige Wahrnehmung der Lichtintensität und -qualität. „Das Photosynthesepigment Chlorophyll in den Blättern absorbiert praktisch alle Blau- und Hellrot-Anteile des Lichtes und lässt nur Dunkelrotlicht passieren“, erläutert Prof. Pollmann. „Im Laubschatten verschiebt sich das Verhältnis von hellrot zu dunkelrot maßgeblich.“ Bemerkt die Pflanze eine solche Verschiebung durch entsprechende Lichtrezeptoren, startet sie eine Reihe von Anpassungen des Entwicklungsprogramms, die man als Schattenvermeidungssyndrom zusammenfasst. Dazu zählen ein beschleunigtes Sprosswachstum und eine Aufwärtsbewegung der Blätter (Hyponastie).

Auxine spielen eine wichtige Rolle

Höhere Pflanzen produzieren eine ganze Reihe von verschiedenen kleinen Signalmolekülen, sog. Phytohormone, die Wachstums- und Differenzierungsprozesse regulieren. Eine besondere Rolle spielen die Auxine, die zu den bekanntesten pflanzlichen Wachstumsfaktoren gehören und ein sehr breites Wirkspektrum haben. Sie sind an nahezu allen pflanzlichen Wachstumsprozessen maßgeblich beteiligt, so auch an der Schattenvermeidungsreaktion. Der zugrunde liegende Mechanismus war allerdings noch weitestgehend ungeklärt. „Man wusste zwar, dass die Auxin-Wirkung auf einem Zusammenspiel von Auxin-Herstellung, -Transport und -Signalweiterleitung beruht – Prozesse, die alle durch eine Veränderung des hellrot-dunkelrot-Verhältnisses beeinflusst werden –, doch die genauen Mechanismen waren noch unverstanden“, so Prof. Pollmann.

Proteinverteilung sorgt für gerichteten Hormonstrom

Einer Gruppe von niederländischen Forschern unter der Leitung des Ökophysiologen Dr. Ronald Pierik aus Utrecht ist es nun gelungen, Licht ins Dunkel zu bringen und die Wachstumsvorgänge im Spross beim Schattenvermeidungssyndrom näher zu beleuchten. Sie machten eine spannende Entdeckung: Ein durch ein niedriges hellrot-dunkelrot-Verhältnis hervorgerufenes Sprosswachstum bedarf einer intakten Auxin-Wahrnehmungsmaschinerie und ist abhängig von der Ansammlung von Auxin im Spross. Diese Ansammlung wird maßgeblich durch das Auxin-Exportprotein PIN-FORMED 3 (PIN3) gewährleistet. PIN3 wird durch ein niedriges Verhältnis von hellrot zu dunkelrot verstärkt gebildet und lagert sich vornehmlich in den seitlichen Wänden von Zellen im Sprossinneren an (Lateralwände von Endodermiszellen). Durch diese Verteilung von PIN3 kommt es zu einem gerichteten Auxin-Strom in Richtung der epidermalen Zellschichten, die für das Längenwachstum des Sprosses verantwortlich sind.

Vergleich zwischen Pflanzen bei Licht und Schatten

Unter Mithilfe des Bochumer Phytohormon-Experten Prof. Dr. Stephan Pollmann ließ sich diese Arbeitshypothese experimentell bestätigen. Mit modernsten massenspektrometrischen Techniken konnte er die Auxin-Gehalte in Wildtypen und gentechnisch hergestellten pin3-Mutanten, die das Exportprotein nicht herstellen können, bei ausreichender Beleuchtung und bei Schatten messen und vergleichen. Bei den genetisch veränderten Pflanzen ohne PIN3 blieb das Schattenvermeidungssyndrom aus. „Davon konnten wir die wichtige Rolle der PIN3-vermittelten Kontrolle der Auxin-Akkumulation während der Schattenvermeidungsreaktion ableiten“, fasst er zusammen.

Titelaufnahme

Keuskamp, D.H., Pollmann, S., Voesenek, L.A.C.J., Peeters, A.J.M., Pierik, R.: Auxin transport through PIN-FORMED 3 (PIN3) controls shade avoidance and fitness during competition. In: Proc. Natl. Acad. Sci. USA, doi: 10.1073/pnas.1013457108

Weitere Informationen

Dr. Ronald Pierik, Universität Utrecht, F.A.F.C. Wentgebouw, Sorbonnelaan 14-16, Room: Z407, 3584 Utrecht, Niederlande, Tel.: +31 30-2536838, Fax: +31 30-2518366, e-mail: r.pierik@uu.nl

Prof. Dr. Stephan Pollmann, Centro de Biotecnología y Genómica de Plantas (UPM-INIA), Campus de Montegancedo, Crta. M-40, km 38, 28223 Pozuelo de Alarcón, Madrid, Spanien, Tel.: +34 91 336-4589, Fax: +34 91 715-7721, e-mail: stephan.pollmann@upm.es

Redaktion: Meike Drießen

Dr. Josef König | idw
Weitere Informationen:
http://www.ruhr-uni-bochum.de/

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Nierentransplantationen: Weisse Blutzellen kontrollieren Virusvermehrung
30.03.2017 | Universität Basel

nachricht Kleinstmagnete für zukünftige Datenspeicher
30.03.2017 | Eidgenössische Technische Hochschule Zürich (ETH Zürich)

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Atome rennen sehen - Phasenübergang live beobachtet

Ein Wimpernschlag ist unendlich lang dagegen – innerhalb von 350 Billiardsteln einer Sekunde arrangieren sich die Atome neu. Das renommierte Fachmagazin Nature berichtet in seiner aktuellen Ausgabe*: Wissenschaftler vom Center for Nanointegration (CENIDE) der Universität Duisburg-Essen (UDE) haben die Bewegungen eines eindimensionalen Materials erstmals live verfolgen können. Dazu arbeiteten sie mit Kollegen der Universität Paderborn zusammen. Die Forscher fanden heraus, dass die Beschleunigung der Atome jeden Porsche stehenlässt.

Egal wie klein sie sind, die uns im Alltag umgebenden Dinge sind dreidimensional: Salzkristalle, Pollen, Staub. Selbst Alufolie hat eine gewisse Dicke. Das...

Im Focus: Kleinstmagnete für zukünftige Datenspeicher

Ein internationales Forscherteam unter der Leitung von Chemikern der ETH Zürich hat eine neue Methode entwickelt, um eine Oberfläche mit einzelnen magnetisierbaren Atomen zu bestücken. Interessant ist dies insbesondere für die Entwicklung neuartiger winziger Datenträger.

Die Idee ist faszinierend: Auf kleinstem Platz könnten riesige Datenmengen gespeichert werden, wenn man für eine Informationseinheit (in der binären...

Im Focus: Quantenkommunikation: Wie man das Rauschen überlistet

Wie kann man Quanteninformation zuverlässig übertragen, wenn man in der Verbindungsleitung mit störendem Rauschen zu kämpfen hat? Uni Innsbruck und TU Wien präsentieren neue Lösungen.

Wir kommunizieren heute mit Hilfe von Funksignalen, wir schicken elektrische Impulse durch lange Leitungen – doch das könnte sich bald ändern. Derzeit wird...

Im Focus: Entwicklung miniaturisierter Lichtmikroskope - „ChipScope“ will ins Innere lebender Zellen blicken

Das Institut für Halbleitertechnik und das Institut für Physikalische und Theoretische Chemie, beide Mitglieder des Laboratory for Emerging Nanometrology (LENA), der Technischen Universität Braunschweig, sind Partner des kürzlich gestarteten EU-Forschungsprojektes ChipScope. Ziel ist es, ein neues, extrem kleines Lichtmikroskop zu entwickeln. Damit soll das Innere lebender Zellen in Echtzeit beobachtet werden können. Sieben Institute in fünf europäischen Ländern beteiligen sich über die nächsten vier Jahre an diesem technologisch anspruchsvollen Projekt.

Die zukünftigen Einsatzmöglichkeiten des neu zu entwickelnden und nur wenige Millimeter großen Mikroskops sind äußerst vielfältig. Die Projektpartner haben...

Im Focus: A Challenging European Research Project to Develop New Tiny Microscopes

The Institute of Semiconductor Technology and the Institute of Physical and Theoretical Chemistry, both members of the Laboratory for Emerging Nanometrology (LENA), at Technische Universität Braunschweig are partners in a new European research project entitled ChipScope, which aims to develop a completely new and extremely small optical microscope capable of observing the interior of living cells in real time. A consortium of 7 partners from 5 countries will tackle this issue with very ambitious objectives during a four-year research program.

To demonstrate the usefulness of this new scientific tool, at the end of the project the developed chip-sized microscope will be used to observe in real-time...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Industriearbeitskreis »Prozesskontrolle in der Lasermaterialbearbeitung ICPC« lädt nach Aachen ein

28.03.2017 | Veranstaltungen

Neue Methoden für zuverlässige Mikroelektronik: Internationale Experten treffen sich in Halle

28.03.2017 | Veranstaltungen

Wie Menschen wachsen

27.03.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Herzerkrankungen: Wenn weniger mehr ist

30.03.2017 | Medizin Gesundheit

Flipper auf atomarem Niveau

30.03.2017 | Physik Astronomie

Europaweite Studie zu „Smart Engineering“

30.03.2017 | Studien Analysen