Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Pflanzen schaffen sich Wasservorrat im Boden

15.09.2011
Dass Wurzeln den Boden in ihrer nächsten Umgebung verändern, ist lange bekannt.

Hier leben andere Mikroorganismen und auch die chemische Zusammensetzung ist anders als in größerer Entfernung von der Wurzel. Nun entdeckte ein internationales Forschungsteam, an dem auch Prof. Dr. Sascha Oswald von der Universität Potsdam beteiligt ist, dass der Boden in der Nähe der Wurzel auch mehr Wasser enthält.

Bisherige Vorstellungen gingen davon aus, dass es dort weniger Wasser geben müsste, weil die Pflanze dem Boden das Wasser entzieht. Offenbar legen sich die Pflanzen aber einen kleinen Wasserspeicher an, der ihnen über kürzere Trockenperioden hinweghelfen kann. Diese Erkenntnisse könnten langfristig bei der Zucht von solchen Pflanzen nützlich sein, die besser mit Trockenheitsperioden zurechtkommen oder die Entwicklung von effizienten Bewässerungssystemen unterstützen.

Die jetzt erhaltenen Forschungsergebnisse basieren auf Untersuchungen am Schweizer Paul Scherrer Institut (PSI). Möglich wurden sie durch Experimente mit Neutronentomografie – einem Verfahren, das es ermöglicht, die Verteilung des Wassers auf Bruchteile eines Millimeters genau zu zeigen, ohne dass die Pflanze aus dem Boden genommen werden müsste. Die renommierte Zeitschrift New Phytologist stellte die Forschungsresultate kürzlich näher vor.

„Die Frage, wie Pflanzen Wasser aufnehmen, ist nicht nur für die Entwicklung von neuen, wassereffizienten Pflanzensorten relevant, sondern auch für die Verbesserung von Klimamodellen“, erklärt Sascha Oswald vom Institut für Erd- und Umweltwissenschaften der Universität Potsdam. „Denn mehr als die Hälfte allen Wassers, das durch Niederschläge auf die Erde fällt, wird von Pflanzen aufgenommen und gelangt durch die Pflanzen hindurch wieder in die Atmosphäre.“ Ein Forschungsprojekt, an dem er mit mehreren Kollegen arbeitet, zeigt, was genau an der Stelle geschieht, an der die Pflanze das Wasser über die Wurzel aufnimmt. „Pflanzen nehmen Wasser aus dem Boden über die feinen, einige Millimeter dünnen Wurzeln auf – die dickeren Wurzeln dienen eher als Pipelines, die das Wasser weiterleiten. Wir wollen die Wasserverteilung um diese Wurzeln herum verstehen“, erklärt Ahmad Moradi von der University of California Davis.

Neutronen zeigen Wassergehalt ohne die Pflanzen zu stören

„Die entscheidenden Vorgänge geschehen hier im Massstab von einigen Millimetern. Damit wir nicht das Entscheidende verpassen, brauchen wir also ein Verfahren, das Details zeigt, die kleiner sind als ein Millimeter. Ein Verfahren, das man einsetzen kann, ohne die Pflanze aus dem Boden zu nehmen“, so Moradi. Die passende Methode fanden die Forscher in der Neutronentomografie am Paul Scherrer Institut. Hier haben sie die Pflanzen mitsamt umgebender Erde mit Hilfe von Neutronen durchleuchtet. Mit diesen Teilchen kann man ähnlich wie mit Röntgenstrahlen in das Innere von verschiedenen Objekten sehen. Neutronen bilden Wasser besonders deutlich ab, während Metall oder Sand für sie fast durchsichtig sind. „Wurzeln bestehen zu 90 Prozent aus Wasser. Wenn man sie oder die Wasserbewegung im Boden untersuchen will, sind Neutronen das bessere Werkzeug als Röntgenstrahlen“, betont der Wissenschaftler.

Die Forscher konnten ein genaues dreidimensionales Bild der Wasserverteilung um die Wurzeln erzeugen und feststellen, wie viel Wasser sich an verschiedenen Stellen im Boden befand. „Für diese Messung wurde die Mikroskopie-Option der Anlage genutzt, so dass man Bilder mit einer Auflösung von 20 Bildpunkten pro Millimeter erzeugen konnte. So war es möglich, das Wasser mit der nötigen Genauigkeit sichtbar zu machen“, erklärt Eberhard Lehmann, dessen Gruppe die Anlagen am PSI betreibt. „Wir haben drei Messplätze, an denen wir Bilder mit Neutronen erzeugen können – jeder mit anderen Eigenschaften. So konnten wir verschiedene Optionen für das Experiment ausprobieren. Ein grosser Vorteil der PSI-Anlagen ist, dass sie rund um die Uhr in Betrieb sind und man so die Pflanzen über einen gesamten Tag-Nacht-Zyklus beobachten konnte.“ Das PSI ist in der Schweiz die einzige Einrichtung, an der Neutronen für die Forschung verfügbar sind.

Mehr Wasser an der Wurzel

Resultat der Untersuchungen ist, dass der Boden in einem Bereich von einigen Millimetern um die Wurzel rund 30 Prozent mehr Wasser enthält als der restliche Boden. Dass die Wurzel ihre unmittelbare Umgebung deutlich verändert, ist bereits länger bekannt. In dieser so genannten Rhizosphäre leben deutlich mehr Mikroorganismen als anderswo und die Konzentration an nützlichen Metallen ist niedriger, weil die Pflanze die Metallionen dem Boden entzieht. So ähnlich hatte man sich das bisher auch beim Wasser vorgestellt. Die Annahme war, dass die Wasserkonzentration in der Nähe der Wurzel kleiner sei als in größerer Entfernung. Denn die Wurzel nimmt Wasser aus dem Boden auf und dieses fließt erst mit der Zeit nach. Die Experimente widerlegen nun diese Vorstellung, und zwar für alle drei untersuchten Pflanzenarten, den Mais, die Lupine und die Kichererbse.

Wasservorrat für schlechte Zeiten

„Über die Frage, wie sich die Wasserkonzentration um die Wurzeln herum erhöht, können wir nur spekulieren. Vermutlich ist eine gallertartige Substanz, die die Wurzel aussondert, dafür verantwortlich. Diese Substanz kann das 10000-fache ihres Trockengewichts an Wasser binden. So könnte sich die Pflanze einen Vorrat für kurze Trockenperioden schaffen“, sagt der Bodenphysiker Andrea Carminati von der Universität Göttingen. Auch wenn dieser Vorrat nicht für lange Dürreperioden reicht, könnte er helfen, eine Periode von bis zu 12 Stunden zu überbrücken, in der die Pflanze sonst von einer Wasserzufuhr abgeschnitten ist. „Wenn man an die praktische Anwendungen unserer Ergebnisse denkt, so könnten sie helfen, Pflanzen zu züchten, die Trockenzeiten besser standhalten. Man könnte auch lernen, Pflanzen gerade so zu bewässern, dass sie keinen Schaden durch Trockenheit nehmen“, ergänzt Sascha Oswald.

Das Projekt

Das Forschungsprojekt wird von Forschern des Helmholtz-Zentrums für Umweltforschung – UFZ, der University of California Davis, der Universität Potsdam und der Universität Göttingen betrieben, die zuvor gemeinsam am UFZ gearbeitet haben. Die dargestellten Experimente wurden am Paul Scherrer Institut PSI (Villigen, Schweiz) durchgeführt und von PSI-Wissenschaftlern betreut.

Kontakt: Prof. Dr. Sascha Oswald, Institut für Erd- und Umweltwissenschaften, Universität Potsdam, Tel.: 0331/977-2675, E-Mail: sascha.oswald@uni-potsdam.de

Dr. Ahmad Moradi, Department of Land, Air and Water Resources, University of California Davis, Davis, CA 95616, USA, E-Mail: amoradi@ucdavis.edu; Telefon: +1 530 752 1210

Dr. Eberhard Lehmann, Leiter Neutronenimaging, Paul Scherrer Institut, 5232 Villigen PSI, Schweiz

E-Mail: eberhard.lehmann@psi.ch; Telefon: +41 56 310 29 63

Dr. Andrea Carminati, Department für Nutzpflanzenwissenschaften, Georg-August-Universität Göttingen, 37018 Göttingen, Deutschland, E-Mail: acarmin@uni-goettingen.de, Telefon: +49 551 39 4629

Sylvia Prietz | Universität Potsdam
Weitere Informationen:
http://www.uni-potsdam.de

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Kontinentalrand mit Leckage
27.03.2017 | MARUM - Zentrum für Marine Umweltwissenschaften an der Universität Bremen

nachricht Neuen molekularen Botenstoff bei Lebererkrankungen entdeckt
27.03.2017 | Universitätsmedizin Mannheim

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Das anwachsende Ende der Ordnung

Physiker aus Konstanz weisen sogenannte Mermin-Wagner-Fluktuationen experimentell nach

Ein Kristall besteht aus perfekt angeordneten Teilchen, aus einer lückenlos symmetrischen Atomstruktur – dies besagt die klassische Definition aus der Physik....

Im Focus: Wegweisende Erkenntnisse für die Biomedizin: NAD⁺ hilft bei Reparatur geschädigter Erbinformationen

Eine internationale Forschergruppe mit dem Bayreuther Biochemiker Prof. Dr. Clemens Steegborn präsentiert in 'Science' neue, für die Biomedizin wegweisende Forschungsergebnisse zur Rolle des Moleküls NAD⁺ bei der Korrektur von Schäden am Erbgut.

Die Zellen von Menschen und Tieren können Schäden an der DNA, dem Träger der Erbinformation, bis zu einem gewissen Umfang selbst reparieren. Diese Fähigkeit...

Im Focus: Designer-Proteine falten DNA

Florian Praetorius und Prof. Hendrik Dietz von der Technischen Universität München (TUM) haben eine neue Methode entwickelt, mit deren Hilfe sie definierte Hybrid-Strukturen aus DNA und Proteinen aufbauen können. Die Methode eröffnet Möglichkeiten für die zellbiologische Grundlagenforschung und für die Anwendung in Medizin und Biotechnologie.

Desoxyribonukleinsäure – besser bekannt unter der englischen Abkürzung DNA – ist die Trägerin unserer Erbinformation. Für Prof. Hendrik Dietz und Florian...

Im Focus: Fliegende Intensivstationen: Ultraschallgeräte in Rettungshubschraubern können Leben retten

Etwa 21 Millionen Menschen treffen jährlich in deutschen Notaufnahmen ein. Im Kampf zwischen Leben und Tod zählt für diese Patienten jede Minute. Wenn sie schon kurz nach dem Unfall zielgerichtet behandelt werden können, verbessern sich ihre Überlebenschancen erheblich. Damit Notfallmediziner in solchen Fällen schnell die richtige Diagnose stellen können, kommen in den Rettungshubschraubern der DRF Luftrettung und zunehmend auch in Notarzteinsatzfahrzeugen mobile Ultraschallgeräte zum Einsatz. Experten der Deutschen Gesellschaft für Ultraschall in der Medizin e.V. (DEGUM) schulen die Notärzte und Rettungsassistenten.

Mit mobilen Ultraschallgeräten können Notärzte beispielsweise innere Blutungen direkt am Unfallort identifizieren und sie bei Bedarf auch für Untersuchungen im...

Im Focus: Gigantische Magnetfelder im Universum

Astronomen aus Bonn und Tautenburg in Thüringen beobachteten mit dem 100-m-Radioteleskop Effelsberg Galaxienhaufen, das sind Ansammlungen von Sternsystemen, heißem Gas und geladenen Teilchen. An den Rändern dieser Galaxienhaufen fanden sie außergewöhnlich geordnete Magnetfelder, die sich über viele Millionen Lichtjahre erstrecken. Sie stellen die größten bekannten Magnetfelder im Universum dar.

Die Ergebnisse werden am 22. März in der Fachzeitschrift „Astronomy & Astrophysics“ veröffentlicht.

Galaxienhaufen sind die größten gravitativ gebundenen Strukturen im Universum, mit einer Ausdehnung von etwa zehn Millionen Lichtjahren. Im Vergleich dazu ist...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Wie Menschen wachsen

27.03.2017 | Veranstaltungen

Zweites Symposium 4SMARTS zeigt Potenziale aktiver, intelligenter und adaptiver Systeme

27.03.2017 | Veranstaltungen

Rund 500 Fachleute aus Wissenschaft und Wirtschaft diskutierten über technologische Zukunftsthemen

24.03.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Fließender Übergang zwischen Design und Simulation

27.03.2017 | HANNOVER MESSE

Industrial Data Space macht neue Geschäftsmodelle möglich

27.03.2017 | HANNOVER MESSE

Neue Sicherheitstechnik ermöglicht Teamarbeit

27.03.2017 | HANNOVER MESSE