Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Pflanzen schaffen sich Wasservorrat im Boden

15.09.2011
Dass Wurzeln den Boden in ihrer nächsten Umgebung verändern, ist lange bekannt.

Hier leben andere Mikroorganismen und auch die chemische Zusammensetzung ist anders als in größerer Entfernung von der Wurzel. Nun entdeckte ein internationales Forschungsteam, an dem auch Prof. Dr. Sascha Oswald von der Universität Potsdam beteiligt ist, dass der Boden in der Nähe der Wurzel auch mehr Wasser enthält.

Bisherige Vorstellungen gingen davon aus, dass es dort weniger Wasser geben müsste, weil die Pflanze dem Boden das Wasser entzieht. Offenbar legen sich die Pflanzen aber einen kleinen Wasserspeicher an, der ihnen über kürzere Trockenperioden hinweghelfen kann. Diese Erkenntnisse könnten langfristig bei der Zucht von solchen Pflanzen nützlich sein, die besser mit Trockenheitsperioden zurechtkommen oder die Entwicklung von effizienten Bewässerungssystemen unterstützen.

Die jetzt erhaltenen Forschungsergebnisse basieren auf Untersuchungen am Schweizer Paul Scherrer Institut (PSI). Möglich wurden sie durch Experimente mit Neutronentomografie – einem Verfahren, das es ermöglicht, die Verteilung des Wassers auf Bruchteile eines Millimeters genau zu zeigen, ohne dass die Pflanze aus dem Boden genommen werden müsste. Die renommierte Zeitschrift New Phytologist stellte die Forschungsresultate kürzlich näher vor.

„Die Frage, wie Pflanzen Wasser aufnehmen, ist nicht nur für die Entwicklung von neuen, wassereffizienten Pflanzensorten relevant, sondern auch für die Verbesserung von Klimamodellen“, erklärt Sascha Oswald vom Institut für Erd- und Umweltwissenschaften der Universität Potsdam. „Denn mehr als die Hälfte allen Wassers, das durch Niederschläge auf die Erde fällt, wird von Pflanzen aufgenommen und gelangt durch die Pflanzen hindurch wieder in die Atmosphäre.“ Ein Forschungsprojekt, an dem er mit mehreren Kollegen arbeitet, zeigt, was genau an der Stelle geschieht, an der die Pflanze das Wasser über die Wurzel aufnimmt. „Pflanzen nehmen Wasser aus dem Boden über die feinen, einige Millimeter dünnen Wurzeln auf – die dickeren Wurzeln dienen eher als Pipelines, die das Wasser weiterleiten. Wir wollen die Wasserverteilung um diese Wurzeln herum verstehen“, erklärt Ahmad Moradi von der University of California Davis.

Neutronen zeigen Wassergehalt ohne die Pflanzen zu stören

„Die entscheidenden Vorgänge geschehen hier im Massstab von einigen Millimetern. Damit wir nicht das Entscheidende verpassen, brauchen wir also ein Verfahren, das Details zeigt, die kleiner sind als ein Millimeter. Ein Verfahren, das man einsetzen kann, ohne die Pflanze aus dem Boden zu nehmen“, so Moradi. Die passende Methode fanden die Forscher in der Neutronentomografie am Paul Scherrer Institut. Hier haben sie die Pflanzen mitsamt umgebender Erde mit Hilfe von Neutronen durchleuchtet. Mit diesen Teilchen kann man ähnlich wie mit Röntgenstrahlen in das Innere von verschiedenen Objekten sehen. Neutronen bilden Wasser besonders deutlich ab, während Metall oder Sand für sie fast durchsichtig sind. „Wurzeln bestehen zu 90 Prozent aus Wasser. Wenn man sie oder die Wasserbewegung im Boden untersuchen will, sind Neutronen das bessere Werkzeug als Röntgenstrahlen“, betont der Wissenschaftler.

Die Forscher konnten ein genaues dreidimensionales Bild der Wasserverteilung um die Wurzeln erzeugen und feststellen, wie viel Wasser sich an verschiedenen Stellen im Boden befand. „Für diese Messung wurde die Mikroskopie-Option der Anlage genutzt, so dass man Bilder mit einer Auflösung von 20 Bildpunkten pro Millimeter erzeugen konnte. So war es möglich, das Wasser mit der nötigen Genauigkeit sichtbar zu machen“, erklärt Eberhard Lehmann, dessen Gruppe die Anlagen am PSI betreibt. „Wir haben drei Messplätze, an denen wir Bilder mit Neutronen erzeugen können – jeder mit anderen Eigenschaften. So konnten wir verschiedene Optionen für das Experiment ausprobieren. Ein grosser Vorteil der PSI-Anlagen ist, dass sie rund um die Uhr in Betrieb sind und man so die Pflanzen über einen gesamten Tag-Nacht-Zyklus beobachten konnte.“ Das PSI ist in der Schweiz die einzige Einrichtung, an der Neutronen für die Forschung verfügbar sind.

Mehr Wasser an der Wurzel

Resultat der Untersuchungen ist, dass der Boden in einem Bereich von einigen Millimetern um die Wurzel rund 30 Prozent mehr Wasser enthält als der restliche Boden. Dass die Wurzel ihre unmittelbare Umgebung deutlich verändert, ist bereits länger bekannt. In dieser so genannten Rhizosphäre leben deutlich mehr Mikroorganismen als anderswo und die Konzentration an nützlichen Metallen ist niedriger, weil die Pflanze die Metallionen dem Boden entzieht. So ähnlich hatte man sich das bisher auch beim Wasser vorgestellt. Die Annahme war, dass die Wasserkonzentration in der Nähe der Wurzel kleiner sei als in größerer Entfernung. Denn die Wurzel nimmt Wasser aus dem Boden auf und dieses fließt erst mit der Zeit nach. Die Experimente widerlegen nun diese Vorstellung, und zwar für alle drei untersuchten Pflanzenarten, den Mais, die Lupine und die Kichererbse.

Wasservorrat für schlechte Zeiten

„Über die Frage, wie sich die Wasserkonzentration um die Wurzeln herum erhöht, können wir nur spekulieren. Vermutlich ist eine gallertartige Substanz, die die Wurzel aussondert, dafür verantwortlich. Diese Substanz kann das 10000-fache ihres Trockengewichts an Wasser binden. So könnte sich die Pflanze einen Vorrat für kurze Trockenperioden schaffen“, sagt der Bodenphysiker Andrea Carminati von der Universität Göttingen. Auch wenn dieser Vorrat nicht für lange Dürreperioden reicht, könnte er helfen, eine Periode von bis zu 12 Stunden zu überbrücken, in der die Pflanze sonst von einer Wasserzufuhr abgeschnitten ist. „Wenn man an die praktische Anwendungen unserer Ergebnisse denkt, so könnten sie helfen, Pflanzen zu züchten, die Trockenzeiten besser standhalten. Man könnte auch lernen, Pflanzen gerade so zu bewässern, dass sie keinen Schaden durch Trockenheit nehmen“, ergänzt Sascha Oswald.

Das Projekt

Das Forschungsprojekt wird von Forschern des Helmholtz-Zentrums für Umweltforschung – UFZ, der University of California Davis, der Universität Potsdam und der Universität Göttingen betrieben, die zuvor gemeinsam am UFZ gearbeitet haben. Die dargestellten Experimente wurden am Paul Scherrer Institut PSI (Villigen, Schweiz) durchgeführt und von PSI-Wissenschaftlern betreut.

Kontakt: Prof. Dr. Sascha Oswald, Institut für Erd- und Umweltwissenschaften, Universität Potsdam, Tel.: 0331/977-2675, E-Mail: sascha.oswald@uni-potsdam.de

Dr. Ahmad Moradi, Department of Land, Air and Water Resources, University of California Davis, Davis, CA 95616, USA, E-Mail: amoradi@ucdavis.edu; Telefon: +1 530 752 1210

Dr. Eberhard Lehmann, Leiter Neutronenimaging, Paul Scherrer Institut, 5232 Villigen PSI, Schweiz

E-Mail: eberhard.lehmann@psi.ch; Telefon: +41 56 310 29 63

Dr. Andrea Carminati, Department für Nutzpflanzenwissenschaften, Georg-August-Universität Göttingen, 37018 Göttingen, Deutschland, E-Mail: acarmin@uni-goettingen.de, Telefon: +49 551 39 4629

Sylvia Prietz | Universität Potsdam
Weitere Informationen:
http://www.uni-potsdam.de

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Sollbruchstellen im Rückgrat - Bioabbaubare Polymere durch chemische Gasphasenabscheidung
02.12.2016 | Gesellschaft Deutscher Chemiker e.V.

nachricht "Fingerabdruck" diffuser Protonen entschlüsselt
02.12.2016 | Universität Leipzig

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Greifswalder Forscher dringen mit superauflösendem Mikroskop in zellulären Mikrokosmos ein

Das Institut für Anatomie und Zellbiologie weiht am Montag, 05.12.2016, mit einem wissenschaftlichen Symposium das erste Superresolution-Mikroskop in Greifswald ein. Das Forschungsmikroskop wurde von der Deutschen Forschungsgemeinschaft (DFG) und dem Land Mecklenburg-Vorpommern finanziert. Nun können die Greifswalder Wissenschaftler Strukturen bis zu einer Größe von einigen Millionstel Millimetern mittels Laserlicht sichtbar machen.

Weit über hundert Jahre lang galt die von Ernst Abbe 1873 publizierte Theorie zur Auflösungsgrenze von Lichtmikroskopen als ein in Stein gemeißeltes Gesetz....

Im Focus: Durchbruch in der Diabetesforschung: Pankreaszellen produzieren Insulin durch Malariamedikament

Artemisinine, eine zugelassene Wirkstoffgruppe gegen Malaria, wandelt Glukagon-produzierende Alpha-Zellen der Bauchspeicheldrüse (Pankreas) in insulinproduzierende Zellen um – genau die Zellen, die bei Typ-1-Diabetes geschädigt sind. Das haben Forscher des CeMM Forschungszentrum für Molekulare Medizin der Österreichischen Akademie der Wissenschaften im Rahmen einer internationalen Zusammenarbeit mit modernsten Einzelzell-Analysen herausgefunden. Ihre bahnbrechenden Ergebnisse werden in Cell publiziert und liefern eine vielversprechende Grundlage für neue Therapien gegen Typ-1 Diabetes.

Seit einigen Jahren hatten sich Forscher an diesem Kunstgriff versucht, der eine simple und elegante Heilung des Typ-1 Diabetes versprach: Die vom eigenen...

Im Focus: Makromoleküle: Mit Licht zu Präzisionspolymeren

Chemikern am Karlsruher Institut für Technologie (KIT) ist es gelungen, den Aufbau von Präzisionspolymeren durch lichtgetriebene chemische Reaktionen gezielt zu steuern. Das Verfahren ermöglicht die genaue, geplante Platzierung der Kettengliedern, den Monomeren, entlang von Polymerketten einheitlicher Länge. Die präzise aufgebauten Makromoleküle bilden festgelegte Eigenschaften aus und eignen sich möglicherweise als Informationsspeicher oder synthetische Biomoleküle. Über die neuartige Synthesereaktion berichten die Wissenschaftler nun in der Open Access Publikation Nature Communications. (DOI: 10.1038/NCOMMS13672)

Chemische Reaktionen lassen sich durch Einwirken von Licht bei Zimmertemperatur auslösen. Die Forscher am KIT nutzen diesen Effekt, um unter Licht die...

Im Focus: Neuer Sensor: Was im Inneren von Schneelawinen vor sich geht

Ein neuer Radarsensor erlaubt Einblicke in die inneren Vorgänge von Schneelawinen. Entwickelt haben ihn Ingenieure der Ruhr-Universität Bochum (RUB) um Dr. Christoph Baer und Timo Jaeschke gemeinsam mit Kollegen aus Innsbruck und Davos. Das Messsystem ist bereits an einem Testhang im Wallis installiert, wo das Schweizer Institut für Schnee- und Lawinenforschung im Winter 2016/17 Messungen damit durchführen möchte.

Die erhobenen Daten sollen in Simulationen einfließen, die das komplexe Geschehen im Inneren von Lawinen detailliert nachbilden. „Was genau passiert, wenn sich...

Im Focus: Neuer Rekord an BESSY II: 10 Millionen Ionen erstmals bis auf 7,4 Kelvin gekühlt

Magnetische Grundzustände von Nickel2-Ionen spektroskopisch ermittelt

Ein internationales Team aus Deutschland, Schweden und Japan hat einen neuen Temperaturrekord für sogenannte Quadrupol-Ionenfallen erreicht, in denen...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Von „Coopetition“ bis „Digitale Union“ – Die Fertigungsindustrien im digitalen Wandel

02.12.2016 | Veranstaltungen

Experten diskutieren Perspektiven schrumpfender Regionen

01.12.2016 | Veranstaltungen

Die Perspektiven der Genom-Editierung in der Landwirtschaft

01.12.2016 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Parkinson-Krankheit und Dystonien: DFG-Forschergruppe eingerichtet

02.12.2016 | Förderungen Preise

Smart Data Transformation – Surfing the Big Wave

02.12.2016 | Studien Analysen

Nach der Befruchtung übernimmt die Eizelle die Führungsrolle

02.12.2016 | Biowissenschaften Chemie