Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Wenn Pflanzen rot sehen

07.09.2011
Biologische Experimente und mathematische Modellierung zeigen,
wie Pflanzen dunkelrotes Licht wahrnehmen.

Pflanzen können dunkelrotes Licht sehen. Das ist für sie überlebens-wichtig, wenn sie im Schatten anderer Pflanzen gedeihen wollen: Dort ist das Lichtspektrum reich an dunkelrotem Licht, aber besitzt kaum Rot- und Blauanteile. Forscher der Universität Tübingen und der Universität Freiburg haben nun herausgefunden, wie die Wahrnehmung von dunkelrotem Licht bei Pflanzen funktioniert. In der aktuellen Ausgabe der Fachzeitschrift "Cell" präsentieren sie, mit welchen Tricks Pflanzen dabei arbeiten.

Menschen und Tiere haben in Sinneszellen der Retina lichtempfindliche Proteine. Ähnlich besitzen auch Pflanzen Proteine, die Licht wahrnehmen – sogenannte Photorezeptoren. Phytochrome sind pflanzliche Photorezeptoren, die am besten durch Rotlicht aktiviert werden und deshalb ideal geeignet sind, den Rot-Anteil im Lichtspektrum wahr-zunehmen. Interessanterweise haben Pflanzen für die Wahrnehmung von dunkelrotem Licht keinen neuen Photorezeptor entwickelt, sondern verwenden ebenfalls ein Phytochrom, obwohl dieses aufgrund seiner photophysikalischen Eigenschaften eigentlich nur schlecht dafür geeignet ist. Dieses Problem war seit langem bekannt, konnte bisher aber nicht gelöst werden.

Die Forscher konnten nun zeigen, wie Pflanzen mit Hilfe von Phytochrom A, einem bestimmten Phytochrom, dunkelrotes Licht wahrnehmen. Die Arbeitsgruppen von Dr. Andreas Hiltbrunner vom Zentrum für Molekularbiologie der Pflanzen (ZMBP) der Universität Tübingen und Prof. Eberhard Schäfer vom Institut für Biologie II der Universität Freiburg konnten schon früher nachweisen, dass Phytochrom A bei der Wahrnehmung von dunkelrotem Licht aus dem Cytosol - dem Bereich außerhalb des Zellkerns - in den Zellkern transportiert wird, und dass dafür sogenannte Transporthelferproteine benötigt werden. In der neuen Arbeit konnte nun die Tübinger Arbeitsgruppe um Dr. Hiltbrunner zeigen, dass diese Transporthelferproteine Phytochrom A im Cytosol binden, dieses in den Zellkern bringen und sich dort wieder von diesem lösen, bevor sie selber wieder ins Cytosol zurückkehren.

Die Arbeitsgruppe konnte auch nachweisen, dass eine leicht veränderte Variante von Phytochrom A, die permanent an die Transporthelferproteine bindet, kaum in den Zellkern transportiert wird und die Wahrnehmung von dunkelrotem Licht fast vollständig blockiert. Der Grund dafür ist, dass die veränderte Variante von Phytochrom A den Zyklus von Bindung an die Transporthelferproteine im Cytosol und Loslösen von diesen im Kern stört. Dr. Julia Rausenberger aus der Arbeitsgruppe von Dr. Christian Fleck vom Zentrum für Biosystemanalyse der Universität Freiburg konnte mit mathematischen Modellen bestätigen, dass genau dieser Transportzyklus wichtig ist für die Funktion von Phytochrom A. Mit Hilfe von Computersimulationen hat sie eine Million Kombinationen von Reaktionskonstanten überprüft und gefunden, dass die Bindung von Phytochrom A an die Transporthelferproteine im Cytosol und die Loslösung von diesen im Zellkern dafür verantwortlich sind, dass Phytochrom A unter anderem optimal als Photorezeptor für dunkelrotes Licht funktioniert. Die mathematische Analyse vereinfachter Reaktionsmodelle identifizierte weitere Schlüsselkomponenten, die für die Wirksamkeit von Phytochrom A in dunkelrotem Licht wichtig sind, und die von Dr. Hiltbrunners Arbeitsgruppe auch experimentell in der Pflanze nachgewiesen werden konnten.

Titel der Originalveröffentlichung:
Rausenberger J, Tscheuschler A, Nordmeier W, Wüst F, Timmer J, Schäfer E, Fleck C, Hiltbrunner A (2011) Photoconversion and nuclear trafficking cycles determine phytochrome A's response profile to far-red light. Cell 146, 813-825.
Kontakt:
Dr. Andreas Hiltbrunner
Universität Tübingen
Zentrum für Molekularbiologie der Pflanzen
Tel. +49 7071 29-73230
andreas.hiltbrunner@zmbp.uni-tuebingen.de
Dr. Christian Fleck
Universität Freiburg
Zentrum für Biosystemanalyse
Tel. +40 761 203-97198
Christian.fleck@fdm.uni-freiburg.de

Michael Seifert | idw
Weitere Informationen:
http://www.uni-freiburg.de

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Entzündung weckt Schläfer
29.03.2017 | Eidgenössische Technische Hochschule Zürich (ETH Zürich)

nachricht Rostocker Forscher wollen Glyphosat „entzaubern“
29.03.2017 | Universität Rostock

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Quantenkommunikation: Wie man das Rauschen überlistet

Wie kann man Quanteninformation zuverlässig übertragen, wenn man in der Verbindungsleitung mit störendem Rauschen zu kämpfen hat? Uni Innsbruck und TU Wien präsentieren neue Lösungen.

Wir kommunizieren heute mit Hilfe von Funksignalen, wir schicken elektrische Impulse durch lange Leitungen – doch das könnte sich bald ändern. Derzeit wird...

Im Focus: Entwicklung miniaturisierter Lichtmikroskope - „ChipScope“ will ins Innere lebender Zellen blicken

Das Institut für Halbleitertechnik und das Institut für Physikalische und Theoretische Chemie, beide Mitglieder des Laboratory for Emerging Nanometrology (LENA), der Technischen Universität Braunschweig, sind Partner des kürzlich gestarteten EU-Forschungsprojektes ChipScope. Ziel ist es, ein neues, extrem kleines Lichtmikroskop zu entwickeln. Damit soll das Innere lebender Zellen in Echtzeit beobachtet werden können. Sieben Institute in fünf europäischen Ländern beteiligen sich über die nächsten vier Jahre an diesem technologisch anspruchsvollen Projekt.

Die zukünftigen Einsatzmöglichkeiten des neu zu entwickelnden und nur wenige Millimeter großen Mikroskops sind äußerst vielfältig. Die Projektpartner haben...

Im Focus: A Challenging European Research Project to Develop New Tiny Microscopes

The Institute of Semiconductor Technology and the Institute of Physical and Theoretical Chemistry, both members of the Laboratory for Emerging Nanometrology (LENA), at Technische Universität Braunschweig are partners in a new European research project entitled ChipScope, which aims to develop a completely new and extremely small optical microscope capable of observing the interior of living cells in real time. A consortium of 7 partners from 5 countries will tackle this issue with very ambitious objectives during a four-year research program.

To demonstrate the usefulness of this new scientific tool, at the end of the project the developed chip-sized microscope will be used to observe in real-time...

Im Focus: Das anwachsende Ende der Ordnung

Physiker aus Konstanz weisen sogenannte Mermin-Wagner-Fluktuationen experimentell nach

Ein Kristall besteht aus perfekt angeordneten Teilchen, aus einer lückenlos symmetrischen Atomstruktur – dies besagt die klassische Definition aus der Physik....

Im Focus: Wegweisende Erkenntnisse für die Biomedizin: NAD⁺ hilft bei Reparatur geschädigter Erbinformationen

Eine internationale Forschergruppe mit dem Bayreuther Biochemiker Prof. Dr. Clemens Steegborn präsentiert in 'Science' neue, für die Biomedizin wegweisende Forschungsergebnisse zur Rolle des Moleküls NAD⁺ bei der Korrektur von Schäden am Erbgut.

Die Zellen von Menschen und Tieren können Schäden an der DNA, dem Träger der Erbinformation, bis zu einem gewissen Umfang selbst reparieren. Diese Fähigkeit...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Industriearbeitskreis »Prozesskontrolle in der Lasermaterialbearbeitung ICPC« lädt nach Aachen ein

28.03.2017 | Veranstaltungen

Neue Methoden für zuverlässige Mikroelektronik: Internationale Experten treffen sich in Halle

28.03.2017 | Veranstaltungen

Wie Menschen wachsen

27.03.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Organisch-anorganische Heterostrukturen mit programmierbaren elektronischen Eigenschaften

29.03.2017 | Energie und Elektrotechnik

Klein bestimmt über groß?

29.03.2017 | Physik Astronomie

OLED-Produktionsanlage aus einer Hand

29.03.2017 | Messenachrichten