Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Pflanzen kommunizieren durch Elektrosignale

18.02.2009
Reaktion auf Umweltreize bereits nach zwei Sekunden messbar

Vergleichbar mit Quallen und Würmern, kommunizieren auch Pflanzenzellen durch elektrische Signale. Diese Widerlegung der Annahme der Botanik, dass Pflanzenzellen ausschließlich durch chemische Signale kommunizieren, liefert eine Studie der Universitäten Florenz und Bonn.

Die Biologen untersuchten die Wurzelspitze von Mais und konnten elektrische Signale nachweisen, die über pflanzliche Synapsen schnell von Zelle zu Zelle weiter geleitet werden. Das berichtet das Online-Wissenschaftsjournal Proceedings of the National Academy of Sciences.

"Pflanzen nehmen Veränderungen ihrer Umwelt sehr aktiv wahr und müssen diese Informationen auch integrieren. Das könnte in der Wurzelspitze geschehen, die wie ein Kommandozentrum agiert", erklärt der Biologe Frantisek Baluska vom Institut für zelluläre und molekulare Botanik der Universität Bonn gegenüber pressetext.

Wurzeln können besonders schnell auf Lageänderungen reagieren. Sie scannen den Boden ständig nach über 20 Parametern wie Verfügbarkeit von Wasser oder Nährstoffen, Temperaturwechsel oder Licht, die sie über Aktionspotenziale wahrnehmen und weitergeben. "Durch die elektrische Weiterleitung ist die Reaktion der Pflanze auf die Wahrnehmung schon zwei Sekunden später nachweisbar", so Baluska.

Das ermögliche ihr, schnell auf toxische Substanzen im Boden zu reagieren, Wachstumssignale an anderer Stelle zu aktivieren und somit schnell ihre Wuchsrichtung zu ändern. Das gelinge dem Mais durch Schwerkraftsensoren in der Wurzelhaube, dessen Signale zu entsprechend geänderter Wuchsrichtung führen. "Würde die Kommunikation zwischen Wachstumszone und Schwerkraftsensor nur hormonell und nicht auch elektrisch geschehen, so würde die Reaktion erst viel später erfolgen", so Baluska.

Dass Pflanzen Aktionspotenziale bilden und in ihrer Wurzelspitze sensorisch-motoschische Kopplungen besitzen, wusste bereits Charles Darwin. 1880 stellte er gemeinsam mit seinem Sohn Francis fest. „Es ist kaum übertrieben zu behaupten, dass sich die Spitze der Keimwurzel wie das Gehirn eines der niederen Tiere verhält. Das Gehirn im vorderen Teil des Körpers empfängt Informationen der Sinnesorgane und steuert mehrere Bewegungen", schloss der britische Naturforscher sein Werk "The Power of Movement of Plants".

Ganz im Gegensatz zu dieser Ansicht setzte sich jedoch nach Entdeckung der Pflanzenhormone in den 1920er Jahren nach längerem Wissenschaftsstreit dieser chemische Signalweg als Mainstream der Biologie durch. "Seit den 70er-Jahren gab es kaum mehr elektrophysiologische Forschungen, da niemand annahm, dass Pflanzen so schnelle Signale brauchen", erklärt Baluska. Warum das jedoch doch der Fall ist, bleibe weiterhin ein Rätsel.

Johannes Pernsteiner | pressetext.deutschland
Weitere Informationen:
http://www.uni-bonn.de
http://ds9.botanik.uni-bonn.de

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Riesenfresszellen steuern die Entwicklung von Nerven und Blutgefäßen im Gehirn
30.05.2017 | Deutsches Krebsforschungszentrum

nachricht 3D-Druckertinte aus dem Wald
30.05.2017 | Empa - Eidgenössische Materialprüfungs- und Forschungsanstalt

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Neue Methode zur Charakterisierung von Graphen

Wissenschaftler haben eine neue Methode entwickelt, um die Eigenschaften von Graphen ohne das Anlegen störender elektrischer Kontakte zu charakterisieren. Damit lassen sich gleichzeitig der Widerstand und die Quantenkapazität von Graphen sowie von anderen zweidimensionalen Materialien untersuchen. Dies berichten Forscher vom Swiss Nanoscience Institute und Departement Physik der Universität Basel im Wissenschaftsjournal «Physical Review Applied».

Graphen besteht aus einer einzigen Lage von Kohlenstoffatomen. Es ist transparent, härter als Diamant, stärker als Stahl, dabei aber flexibel und ein deutlich...

Im Focus: New Method of Characterizing Graphene

Scientists have developed a new method of characterizing graphene’s properties without applying disruptive electrical contacts, allowing them to investigate both the resistance and quantum capacitance of graphene and other two-dimensional materials. Researchers from the Swiss Nanoscience Institute and the University of Basel’s Department of Physics reported their findings in the journal Physical Review Applied.

Graphene consists of a single layer of carbon atoms. It is transparent, harder than diamond and stronger than steel, yet flexible, and a significantly better...

Im Focus: Detaillierter Blick auf molekularen Gifttransporter

Transportproteine in unseren Körperzellen schützen uns vor gewissen Vergiftungen. Forschende der ETH Zürich und der Universität Basel haben nun die hochaufgelöste dreidimensionale Struktur eines bedeutenden menschlichen Transportproteins aufgeklärt. Langfristig könnte dies helfen, neue Medikamente zu entwickeln.

Fast alle Lebewesen haben im Lauf der Evolution Mechanismen entwickelt, um Giftstoffe, die ins Innere ihrer Zellen gelangt sind, wieder loszuwerden: In der...

Im Focus: Neue Methode für die Datenübertragung mit Licht

Der steigende Bedarf an schneller, leistungsfähiger Datenübertragung erfordert die Entwicklung neuer Verfahren zur verlustarmen und störungsfreien Übermittlung von optischen Informationssignalen. Wissenschaftler der Universität Johannesburg, des Instituts für Angewandte Optik der Friedrich-Schiller-Universität Jena und des Leibniz-Instituts für Photonische Technologien Jena (Leibniz-IPHT) präsentieren im Fachblatt „Journal of Optics“ eine neue Möglichkeit, glasfaserbasierte und kabellose optische Datenübertragung effizient miteinander zu verbinden.

Dank des Internets können wir in Sekundenbruchteilen mit Menschen rund um den Globus in Kontakt treten. Damit die Kommunikation reibungslos funktioniert,...

Im Focus: Strathclyde-led research develops world's highest gain high-power laser amplifier

The world's highest gain high power laser amplifier - by many orders of magnitude - has been developed in research led at the University of Strathclyde.

The researchers demonstrated the feasibility of using plasma to amplify short laser pulses of picojoule-level energy up to 100 millijoules, which is a 'gain'...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Wissenschaftsforum Chemie 2017

30.05.2017 | Veranstaltungen

Erfolgsfaktor Digitalisierung

30.05.2017 | Veranstaltungen

Lebensdauer alternder Brücken - prüfen und vorausschauen

29.05.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Neue Methode zur Charakterisierung von Graphen

30.05.2017 | Physik Astronomie

Riesenfresszellen steuern die Entwicklung von Nerven und Blutgefäßen im Gehirn

30.05.2017 | Biowissenschaften Chemie

Nano-U-Boot mit Selbstzerstörungs-Mechanismus

30.05.2017 | Biowissenschaften Chemie