Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Pflanzen kommunizieren durch Elektrosignale

18.02.2009
Reaktion auf Umweltreize bereits nach zwei Sekunden messbar

Vergleichbar mit Quallen und Würmern, kommunizieren auch Pflanzenzellen durch elektrische Signale. Diese Widerlegung der Annahme der Botanik, dass Pflanzenzellen ausschließlich durch chemische Signale kommunizieren, liefert eine Studie der Universitäten Florenz und Bonn.

Die Biologen untersuchten die Wurzelspitze von Mais und konnten elektrische Signale nachweisen, die über pflanzliche Synapsen schnell von Zelle zu Zelle weiter geleitet werden. Das berichtet das Online-Wissenschaftsjournal Proceedings of the National Academy of Sciences.

"Pflanzen nehmen Veränderungen ihrer Umwelt sehr aktiv wahr und müssen diese Informationen auch integrieren. Das könnte in der Wurzelspitze geschehen, die wie ein Kommandozentrum agiert", erklärt der Biologe Frantisek Baluska vom Institut für zelluläre und molekulare Botanik der Universität Bonn gegenüber pressetext.

Wurzeln können besonders schnell auf Lageänderungen reagieren. Sie scannen den Boden ständig nach über 20 Parametern wie Verfügbarkeit von Wasser oder Nährstoffen, Temperaturwechsel oder Licht, die sie über Aktionspotenziale wahrnehmen und weitergeben. "Durch die elektrische Weiterleitung ist die Reaktion der Pflanze auf die Wahrnehmung schon zwei Sekunden später nachweisbar", so Baluska.

Das ermögliche ihr, schnell auf toxische Substanzen im Boden zu reagieren, Wachstumssignale an anderer Stelle zu aktivieren und somit schnell ihre Wuchsrichtung zu ändern. Das gelinge dem Mais durch Schwerkraftsensoren in der Wurzelhaube, dessen Signale zu entsprechend geänderter Wuchsrichtung führen. "Würde die Kommunikation zwischen Wachstumszone und Schwerkraftsensor nur hormonell und nicht auch elektrisch geschehen, so würde die Reaktion erst viel später erfolgen", so Baluska.

Dass Pflanzen Aktionspotenziale bilden und in ihrer Wurzelspitze sensorisch-motoschische Kopplungen besitzen, wusste bereits Charles Darwin. 1880 stellte er gemeinsam mit seinem Sohn Francis fest. „Es ist kaum übertrieben zu behaupten, dass sich die Spitze der Keimwurzel wie das Gehirn eines der niederen Tiere verhält. Das Gehirn im vorderen Teil des Körpers empfängt Informationen der Sinnesorgane und steuert mehrere Bewegungen", schloss der britische Naturforscher sein Werk "The Power of Movement of Plants".

Ganz im Gegensatz zu dieser Ansicht setzte sich jedoch nach Entdeckung der Pflanzenhormone in den 1920er Jahren nach längerem Wissenschaftsstreit dieser chemische Signalweg als Mainstream der Biologie durch. "Seit den 70er-Jahren gab es kaum mehr elektrophysiologische Forschungen, da niemand annahm, dass Pflanzen so schnelle Signale brauchen", erklärt Baluska. Warum das jedoch doch der Fall ist, bleibe weiterhin ein Rätsel.

Johannes Pernsteiner | pressetext.deutschland
Weitere Informationen:
http://www.uni-bonn.de
http://ds9.botanik.uni-bonn.de

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Forscher entschlüsseln zentrales Reaktionsprinzip von Metalloenzymen
16.01.2018 | Rheinisch-Westfälische Technische Hochschule Aachen

nachricht Leuchtende Echsen - Knochenbasierte Fluoreszenz bei Chamäleons
15.01.2018 | Staatliche Naturwissenschaftliche Sammlungen Bayerns

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Forscher entschlüsseln zentrales Reaktionsprinzip von Metalloenzymen

Sogenannte vorverspannte Zustände beschleunigen auch photochemische Reaktionen

Was ermöglicht den schnellen Transfer von Elektronen, beispielsweise in der Photosynthese? Ein interdisziplinäres Forscherteam hat die Funktionsweise wichtiger...

Im Focus: Scientists decipher key principle behind reaction of metalloenzymes

So-called pre-distorted states accelerate photochemical reactions too

What enables electrons to be transferred swiftly, for example during photosynthesis? An interdisciplinary team of researchers has worked out the details of how...

Im Focus: Erstmalige präzise Messung der effektiven Ladung eines einzelnen Moleküls

Zum ersten Mal ist es Forschenden gelungen, die effektive elektrische Ladung eines einzelnen Moleküls in Lösung präzise zu messen. Dieser fundamentale Fortschritt einer vom SNF unterstützten Professorin könnte den Weg für die Entwicklung neuartiger medizinischer Diagnosegeräte ebnen.

Die elektrische Ladung ist eine der Kerneigenschaften, mit denen Moleküle miteinander in Wechselwirkung treten. Das Leben selber wäre ohne diese Eigenschaft...

Im Focus: The first precise measurement of a single molecule's effective charge

For the first time, scientists have precisely measured the effective electrical charge of a single molecule in solution. This fundamental insight of an SNSF Professor could also pave the way for future medical diagnostics.

Electrical charge is one of the key properties that allows molecules to interact. Life itself depends on this phenomenon: many biological processes involve...

Im Focus: Wie Metallstrukturen effektiv helfen, Knochen zu heilen

Forscher schaffen neue Generation von Knochenimplantaten

Wissenschaftler am Julius Wolff Institut, dem Berlin-Brandenburger Centrum für Regenerative Therapien und dem Centrum für Muskuloskeletale Chirurgie der...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

2. Hannoverscher Datenschutztag: Neuer Datenschutz im Mai – Viele Unternehmen nicht vorbereitet!

16.01.2018 | Veranstaltungen

Fachtagung analytica conference 2018

15.01.2018 | Veranstaltungen

Tagung „Elektronikkühlung - Wärmemanagement“ vom 06. - 07.03.2018 in Essen

11.01.2018 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Rittal mit neuem Onlineauftritt - Lösungskompetenz für alle IT-Szenarien

16.01.2018 | Unternehmensmeldung

Die „dunkle“ Seite der Spin-Physik

16.01.2018 | Physik Astronomie

Wetteranomalien verstärken Meereisschwund

16.01.2018 | Geowissenschaften