Pflanzen gegen Staunässe schützen

Die Acker-Schmalwand (Arabidopsis thaliana) eignet sich hervorragend als Modellorganismus für Laboruntersuchungen. Foto: Emese Eysholdt-Derzsó

Forschende warnen vor künftig immer häufiger auftretenden Extremwetterereignissen infolge des Klimawandels. Aktuelle Umweltkatastrophen wie zum Beispiel die in diesem Jahr zahlreichen und besonders starken tropischen Hurrikane scheinen diese Tendenz zu bestätigen. Oft sind solche Wetterextreme von Überflutungen begleitet, die auch landwirtschaftlich genutzte Flächen vermehrt betreffen.

Für den Pflanzenbau werden sie zu einem immer schwerwiegenderen Problem, denn die Mehrzahl der intensiv angebauten Nutzpflanzen ist wenig nässetolerant. Zunehmende Ertragseinbußen zeichnen sich ab. Gleichzeitig nimmt der Ertragsdruck auf die zur Verfügung stehenden landwirtschaftlichen Flächen angesichts der wachsenden Weltbevölkerung rapide zu.

CAU-Forscherinnen aus der Arbeitsgruppe Entwicklungsbiologie und Physiologie der Pflanzen am Botanischen Institut der Christian-Albrechts-Universität zu Kiel (CAU) beschäftigen sich in diesem Zusammenhang mit den Auswirkungen der globalen Klimaveränderungen auf die Wachstumsbedingungen von Pflanzen.

Am Beispiel der häufig im Labor genutzten Modellpflanze Arabidopsis thaliana, die auch als Acker-Schmalwand bekannt ist, untersuchte die Doktorandin Emese Eysholdt-Derzsó, wie Pflanzen auf vorübergehenden Nässestress reagieren.

„In ihrer Arbeit beschreibt Eysholdt-Derzsó erstmals im Detail, welche Auswirkungen Staunässe und der damit verbundene Sauerstoffmangel auf das Wachstum der Acker-Schmalwand-Wurzeln hat und welche genetischen Mechanismen die Anpassung der Pflanze steuern“, betont die Leiterin der Forschungsgruppe, Professorin Margret Sauter. Die neuen Erkenntnisse veröffentlichte das Kieler Forschungsteam kürzlich in der Fachzeitschrift Plant Physiology.

Nässe und sauerstoffarme Bodenverhältnisse sind für die meisten Pflanzen existenzbedrohend, da sie die Wurzeln am Wachstum und damit an der Nährstoffaufnahme hindern. Für eine gewisse Zeit können sie sich allerdings mit verschiedenen Schutzmechanismen an Staunässe anpassen. Die CAU-Forscherinnen untersuchten nun, wie sich Nässe auf das Wachstum und die Gesamtstruktur der Acker-Schmalwand-Wurzeln auswirkt.

Dazu setzten sie sieben Tage alte Arabidopsis-Keimlinge abwechselnd unterschiedlichen Sauerstoffregimes aus: Jeweils für einen Tag waren sie mit nassen und sauerstoffarmen und dann wieder mit normalen Wachstumsbedingungen konfrontiert. Die Versuche zeigten, wie die Wurzeln besonders nassen und sauerstoffarmen Bodenbereichen zu entgehen versuchen.

Mittels eines genetisch festgelegten Regelmechanismus unterbricht die Pflanze das normale, nach unten gerichtete Wurzelwachstum. Stattdessen weichen die Wurzeln horizontal in Richtung trockenerer und damit sauerstoffreicherer Bodenbereiche aus. „Wir konnten zeigen, dass dieser Ablauf reversibel ist. Sobald ausreichend Sauerstoff zur Verfügung steht, wachsen die Wurzeln wieder wie üblich nach unten“, sagt die Erstautorin Eysholdt-Derzsó.

Den gesamten Prozess bezeichnen die Kieler Wissenschaftlerinnen als Root Bending. Es gelang ihnen, die dafür verantwortliche genetische Regulation zu entschlüsseln: Fünf der insgesamt 130 Mitglieder der sogenannten ERF-Transkriptionsfaktoren der Acker-Schmalwand sind dafür zuständig, auf den Nässestress der Wurzel zu reagieren. Sie aktivieren Gene, die für eine gezielte Verteilung des pflanzlichen Wachstumshormons Auxin in der Wurzel sorgen.

Dieses Phytohormon wird dabei asymmetrisch im Wurzelgewebe umgelagert. Da das Auxin hemmend wirkt, wächst die Wurzel dort langsamer, wo es in hoher Konzentration auftritt, so dass eine Biegung der Wurzel ausgelöst wird. Die Verteilung von Auxin in der Wurzel und damit der Auslöser des Root Bending lässt sich mit einer Fluoreszenz-Methode sichtbar machen.

Die Acker-Schmalwand gehört zur Familie der Kreuzblütler und ist zum Beispiel mit Raps oder diversen Kohlsorten verwandt. Die am Modellorganismus gewonnenen Erkenntnisse lassen sich daher mit einiger Wahrscheinlichkeit auf verschiedene Nutzpflanzen übertragen.

Künftige Forschungsarbeiten werden dabei helfen, den Mechanismus des Root Bending auch an anderen Pflanzen weiter zu erforschen und zu verstehen. Langfristiges Ziel der Forschenden ist es, eine eventuelle Übertragung auf Nutzpflanzen zu erreichen, um so in Zukunft ihre Staunässetoleranz zu erhöhen und damit landwirtschaftliche Ertragseinbußen zu verringern.

Die vorliegende Forschungsarbeit wurde im Rahmen einer Einzelprojekt-Förderung der Deutschen Forschungsgemeinschaft (DFG) finanziert.

Originalarbeit:
Emese Eysholdt-Derzsó, Margret Sauter (2017): “ Root bending is antagonistically affected by hypoxia and ERF-mediated transcription via auxin signaling”. Plant Physiology
https://dx.doi.org/10.1104/pp.17.00555

Es stehen Fotos/Materialien zum Download bereit:

http://www.uni-kiel.de/download/pm/2017/2017-318-1.jpg
Bildunterschrift: Der durch Nässe bedingte Sauerstoffmangel des Bodens verursacht die Biegung (rechts im Bild) der Arabidopsis-Wurzel.
Abbildung: Emese Eysholdt-Derzsó

http://www.uni-kiel.de/download/pm/2017/2017-318-2.jpg
Bildunterschrift: Die Acker-Schmalwand (Arabidopsis thaliana) eignet sich hervorragend als Modellorganismus für Laboruntersuchungen.
Foto: Emese Eysholdt-Derzsó

http://www.uni-kiel.de/download/pm/2017/2017-318-3.jpg
Bildunterschrift: Das Phytohormon Auxin (fluoreszierend am rechten Bildrand) hemmt das Wachstum einseitig und krümmt dadurch die Arabidopsis-Wurzel.
Abbildung: Emese Eysholdt-Derzsó

http://www.uni-kiel.de/download/pm/2017/2017-318-4.jpg
Bildunterschrift: Emese Eysholdt-Derzsó, Doktorandin in der Entwicklungsbiologie und Physiologie der Pflanzen an der CAU, erforschte das Root Bending.
Foto: Christian Urban, Universität Kiel

http://www.uni-kiel.de/download/pm/2017/2017-318-5.jpg
Bildunterschrift: Um das Root Bending zu untersuchen, verwendeten die Forscherinnen Acker-Schmalwand-Keimlinge, die unter kontrollierten Bedingungen gezüchtet wurden.
Foto: Christian Urban, Universität Kiel

Kontakt:
Prof. Margret Sauter
Botanisches Institut und Botanischer Garten, CAU Kiel
Tel.: 0431-880-4210
E-Mail: msauter@bot.uni-kiel.de

Weitere Informationen:
Entwicklungsbiologie und Physiologie der Pflanzen (AG Sauter),
Botanisches Institut und Botanischer Garten, CAU Kiel:
http://www.sauter.botanik.uni-kiel.de

Forschungsschwerpunkt „Kiel Life Science“, CAU Kiel:
http://www.kls.uni-kiel.de

Christian-Albrechts-Universität zu Kiel
Presse, Kommunikation und Marketing, Dr. Boris Pawlowski
Postanschrift: D-24098 Kiel, Telefon: (0431) 880-2104, Telefax: (0431) 880-1355
E-Mail: ► presse@uv.uni-kiel.de, Internet: ► www.uni-kiel.de
Twitter: ► www.twitter.com/kieluni, Facebook: ► www.facebook.com/kieluni, Instagram: ► www.instagram.com/kieluni
Text / Redaktion: ► Christian Urban

Media Contact

Christian Urban Christian-Albrechts-Universität zu Kiel

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie

Der innovations-report bietet im Bereich der "Life Sciences" Berichte und Artikel über Anwendungen und wissenschaftliche Erkenntnisse der modernen Biologie, der Chemie und der Humanmedizin.

Unter anderem finden Sie Wissenswertes aus den Teilbereichen: Bakteriologie, Biochemie, Bionik, Bioinformatik, Biophysik, Biotechnologie, Genetik, Geobotanik, Humanbiologie, Meeresbiologie, Mikrobiologie, Molekularbiologie, Zellbiologie, Zoologie, Bioanorganische Chemie, Mikrochemie und Umweltchemie.

Zurück zur Startseite

Kommentare (0)

Schreiben Sie einen Kommentar

Neueste Beiträge

Wie Zellen die Kurve kriegen

Die Krümmung einer Oberfläche bestimmt das Bewegungsverhalten von Zellen. Sie bewegen sich bevorzugt entlang von Tälern oder Rillen, während sie Erhebungen meiden. Mit diesen Erkenntnissen unter Beteiligung des Max-Planck-Instituts für…

Herzinsuffizienz: Zwei Jahre mit Herzpflaster

Patient berichtet über Erfahrungen. Weltweit einzigartig: Patient*innen mit Herzschwäche wurde im Rahmen einer Studie der Universitätsmedizin Göttingen (UMG) und des Universitätsklinikums Schleswig-Holstein (UKSH) im Labor gezüchtetes Herzgewebe implantiert. Das sogenannte…

Ereignisbündel verstärken Klimafolgen

Was passiert in Ostfriesland, wenn Sturmfluten und Starkregenereignisse gleichzeitig und über einen längeren Zeitraum auftreten? Welche Auswirkungen haben diese Ereignisse auf den Insel- und Küstenschutz, die Binnenentwässerung, die Süßwasserversorgung und…

Partner & Förderer