Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Pflanzen „beißen“ zurück

19.05.2016

Im Tierreich ist Kalziumphosphat weit verbreitet: Aus dem sehr harten Mineral bestehen zum Beispiel Knochen oder auch Zähne. Forscher der Universität Bonn haben nun erstmals entdeckt, dass Kalziumphosphat zur mechanischen Stabilisierung auch in höheren Pflanzen vorkommt. Bei den Blumennesselgewächsen (Loasaceae) verleiht das Mineral den Nesselhaaren den nötigen „Biss“. Es härtet die Haare, die der Abwehr von Tierfraß dienen. Bei unseren heimischen Brennnesseln bestehen die schmerzhaften Nesselhaare dagegen aus glasartigem Silizium. Die Ergebnisse werden nun im Fachjournal „Scientific Reports“ vorgesellt.

Weidetiere fressen meist nur einmal davon: Berührt ihre Zunge die winzigen Haare der Blumennesselgewächse (Loasaceae), dann brechen die Spitzen dieser Brennhaare ab und ein schmerzhaftes Gebräu ergießt sich in das Maul. Die wehrhaften Gewächse haben ihren Verbreitungsschwerpunkt in den südamerikanischen Anden.


Unter dem Rasterelektronenmikroskop: Blattunterseite der Blumennessel Loasa pallida. Die rot angefärbten Bereiche zeigen mineralische Einlagerungen.

(c) Aufnahme: H.-J. Ensikat und M. Weigend/Uni Bonn


Vielfarbige Blüte der Blumennessel Blumenbachia insignis im Botanischen Garten der Universität Bonn.

(c) Foto: M. Weigend/Uni Bonn

„Der Mechanismus bei den uns vertrauten Brennnesseln funktioniert ganz ähnlich“, sagt Prof. Dr. Maximilian Weigend vom Nees-Institut für Biodiversität der Pflanzen an der Universität Bonn. Zwischen den sehr entfernt verwandten Brennnesseln und Blumennesseln gibt es neben ihres sehr unterschiedlichen Aussehens jedoch noch einen wichtigen Unterschied: Während die heimischen Gewächse ihre spitzen Härchen mit glasartigem Silizium härten, verwenden ihre südamerikanischen Kollegen mit ihren spektakulären Blüten dafür Kalziumphosphat.

Bislang war von Kalziumphosphat nicht bekannt, dass es auch bei höheren Pflanzen zur mechanischen Stabilisierung vorkommt. „Die Mineralien in den Brennhaaren sind chemisch den Zähnen von Mensch und Tier sehr ähnlich“, sagt Prof. Weigend, der seit fast 25 Jahren die mannigfaltigen Blumennesselgewächse erforscht. Zuvor sind vielen Wissenschaftlern ihre außerordentlich harten Abwehrhaare aufgefallen, doch niemand hat bislang hinterfragt, aus welchem Material sie eigentlich bestehen. An ihrem eigenen Elektronenmikroskop und mit Hilfe von Wissenschaftlern des Steinmann-Instituts für Geologie, Mineralogie und Paläontologie sowie des Instituts für Anorganische Chemie der Universität Bonn untersuchten die Botaniker die Brennhaare, die einer Injektionsspritze gleichen.

Die Brennhaarspitzen sind ähnlich aufgebaut wie Stahlbeton

Dabei zeigte sich, dass die mechanisch besonders beanspruchten Stellen an den Haarspitzen der Blumennesseln mit Kalziumphosphat verstärkt sind. „Es handelt sich dabei um ein Kompositmaterial, das ähnlich wie Stahlbeton aufgebaut ist“, erläutert Prof. Weigend. Die faserförmige Cellulose bildet als übliches Baumaterial der Pflanzen ein formgebendes Geflecht, in dessen „Maschen“ winzige Kristalle aus Kalziumphosphat eingelagert sind. „Das verleiht den Brennhaaren eine ganz außerordentliche Stabilität“, ist der Wissenschaftler der Universität Bonn überzeugt.

Warum die Blumennesselgewächse sich für diesen Sonderweg entschieden haben, während die meisten Pflanzen zur mechanischen Stabilisierung das glasartige Silikat verwenden, ist noch ein Rätsel. „Ein häufiger Grund für Sonderlösungen in der Evolution ist, dass der Stoffwechsel eines Organismus nur einen bestimmten Weg beschreiten kann“, sagt Prof. Weigend. Doch Blumennesseln können sehr wohl auch Silikat zur Härtung bestimmter Pflanzenteile herstellen. Warum sie sich an den Haarspitzen gerade dem Material verschrieben haben, aus denen auch die Kauwerkzeuge ihrer Fressfeinde bestehen, muss erst noch erforscht werden. „Noch kann man nur über die Anpassungsstrategie spekulieren. Aber es scheint so zu sein, dass Blumennesseln mit gleicher Münze heimzahlen: Zähne gegen Zähne“, schmunzelt der Biologe der Universität Bonn.

Bionik: Brennhaare als Vorbild für Knochenersatzmaterialien

Weitere Forschungsprojekte sollen nun zutage fördern, welche Pflanzen Kalziumphosphat noch für die raue Umwelt hart macht und welche biomechanischen Vorzüge das Material in den grünen Lebewesen hat. Potenziell ist die Entdeckung auch für bionische Anwendungen interessant. „Bei Ersatzmaterial etwa für den Zahnersatz, die Orthopädie oder die Gesichtschirurgie kommt es sehr darauf an, dass es keine Abstoßungsreaktionen auslöst“, sagt Prof. Weigend. Das Kalziumphosphat-Cellulose-Komposit der Blumennesseln könnte ein vielversprechendes natürliches Vorbild für solche Zwecke sein.

Publikation: Hans-Jürgen Ensikat, Thorsten Geisler & Maximilian Weigend: A first report of hydroxylated apatite as structural biomineral in Loasaceae – plants‘ teeth against herbivoren, Scientific Reports, DOI: 10.1038/srep26073

Kontakt für die Medien:

Prof. Dr. Maximilian Weigend
Nees-Institut für Biodiversität der Pflanzen
Universität Bonn
Tel. 0228/732121
E-Mail: mweigend@uni-bonn.de

Johannes Seiler | idw - Informationsdienst Wissenschaft
Weitere Informationen:
http://www.uni-bonn.de

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Wasserbewegung als Hinweis auf den Zustand von Tumoren
19.04.2018 | Gesellschaft Deutscher Chemiker e.V.

nachricht Verbesserte Stabilität von Kunststoff-Leuchtdioden
19.04.2018 | Max-Planck-Institut für Polymerforschung

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Verbesserte Stabilität von Kunststoff-Leuchtdioden

Polymer-Leuchtdioden (PLEDs) sind attraktiv für den Einsatz in großflächigen Displays und Lichtpanelen, aber ihre begrenzte Stabilität verhindert die Kommerzialisierung. Wissenschaftler aus dem Max-Planck-Institut für Polymerforschung (MPIP) in Mainz haben jetzt die Ursachen der Instabilität aufgedeckt.

Bildschirme und Smartphones, die gerollt und hochgeklappt werden können, sind Anwendungen, die in Zukunft durch die Entwicklung von polymerbasierten...

Im Focus: Writing and deleting magnets with lasers

Study published in the journal ACS Applied Materials & Interfaces is the outcome of an international effort that included teams from Dresden and Berlin in Germany, and the US.

Scientists at the Helmholtz-Zentrum Dresden-Rossendorf (HZDR) together with colleagues from the Helmholtz-Zentrum Berlin (HZB) and the University of Virginia...

Im Focus: Gammastrahlungsblitze aus Plasmafäden

Neuartige hocheffiziente und brillante Quelle für Gammastrahlung: Anhand von Modellrechnungen haben Physiker des Heidelberger MPI für Kernphysik eine neue Methode für eine effiziente und brillante Gammastrahlungsquelle vorgeschlagen. Ein gigantischer Gammastrahlungsblitz wird hier durch die Wechselwirkung eines dichten ultra-relativistischen Elektronenstrahls mit einem dünnen leitenden Festkörper erzeugt. Die reichliche Produktion energetischer Gammastrahlen beruht auf der Aufspaltung des Elektronenstrahls in einzelne Filamente, während dieser den Festkörper durchquert. Die erreichbare Energie und Intensität der Gammastrahlung eröffnet neue und fundamentale Experimente in der Kernphysik.

Die typische Wellenlänge des Lichtes, die mit einem Objekt des Mikrokosmos wechselwirkt, ist umso kürzer, je kleiner dieses Objekt ist. Für Atome reicht dies...

Im Focus: Gamma-ray flashes from plasma filaments

Novel highly efficient and brilliant gamma-ray source: Based on model calculations, physicists of the Max PIanck Institute for Nuclear Physics in Heidelberg propose a novel method for an efficient high-brilliance gamma-ray source. A giant collimated gamma-ray pulse is generated from the interaction of a dense ultra-relativistic electron beam with a thin solid conductor. Energetic gamma-rays are copiously produced as the electron beam splits into filaments while propagating across the conductor. The resulting gamma-ray energy and flux enable novel experiments in nuclear and fundamental physics.

The typical wavelength of light interacting with an object of the microcosm scales with the size of this object. For atoms, this ranges from visible light to...

Im Focus: Wie schwingt ein Molekül, wenn es berührt wird?

Physiker aus Regensburg, Kanazawa und Kalmar untersuchen Einfluss eines äußeren Kraftfeldes

Physiker der Universität Regensburg (Deutschland), der Kanazawa University (Japan) und der Linnaeus University in Kalmar (Schweden) haben den Einfluss eines...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

Internationale Konferenz zur Digitalisierung

19.04.2018 | Veranstaltungen

124. Internistenkongress in Mannheim: Internisten rücken Altersmedizin in den Fokus

19.04.2018 | Veranstaltungen

DFG unterstützt Kongresse und Tagungen - Juni 2018

17.04.2018 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Nachhaltige und innovative Lösungen

19.04.2018 | HANNOVER MESSE

Internationale Konferenz zur Digitalisierung

19.04.2018 | Veranstaltungsnachrichten

Auf dem Weg zur optischen Kernuhr

19.04.2018 | Physik Astronomie

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics