Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Pflanzen „beißen“ zurück

19.05.2016

Im Tierreich ist Kalziumphosphat weit verbreitet: Aus dem sehr harten Mineral bestehen zum Beispiel Knochen oder auch Zähne. Forscher der Universität Bonn haben nun erstmals entdeckt, dass Kalziumphosphat zur mechanischen Stabilisierung auch in höheren Pflanzen vorkommt. Bei den Blumennesselgewächsen (Loasaceae) verleiht das Mineral den Nesselhaaren den nötigen „Biss“. Es härtet die Haare, die der Abwehr von Tierfraß dienen. Bei unseren heimischen Brennnesseln bestehen die schmerzhaften Nesselhaare dagegen aus glasartigem Silizium. Die Ergebnisse werden nun im Fachjournal „Scientific Reports“ vorgesellt.

Weidetiere fressen meist nur einmal davon: Berührt ihre Zunge die winzigen Haare der Blumennesselgewächse (Loasaceae), dann brechen die Spitzen dieser Brennhaare ab und ein schmerzhaftes Gebräu ergießt sich in das Maul. Die wehrhaften Gewächse haben ihren Verbreitungsschwerpunkt in den südamerikanischen Anden.


Unter dem Rasterelektronenmikroskop: Blattunterseite der Blumennessel Loasa pallida. Die rot angefärbten Bereiche zeigen mineralische Einlagerungen.

(c) Aufnahme: H.-J. Ensikat und M. Weigend/Uni Bonn


Vielfarbige Blüte der Blumennessel Blumenbachia insignis im Botanischen Garten der Universität Bonn.

(c) Foto: M. Weigend/Uni Bonn

„Der Mechanismus bei den uns vertrauten Brennnesseln funktioniert ganz ähnlich“, sagt Prof. Dr. Maximilian Weigend vom Nees-Institut für Biodiversität der Pflanzen an der Universität Bonn. Zwischen den sehr entfernt verwandten Brennnesseln und Blumennesseln gibt es neben ihres sehr unterschiedlichen Aussehens jedoch noch einen wichtigen Unterschied: Während die heimischen Gewächse ihre spitzen Härchen mit glasartigem Silizium härten, verwenden ihre südamerikanischen Kollegen mit ihren spektakulären Blüten dafür Kalziumphosphat.

Bislang war von Kalziumphosphat nicht bekannt, dass es auch bei höheren Pflanzen zur mechanischen Stabilisierung vorkommt. „Die Mineralien in den Brennhaaren sind chemisch den Zähnen von Mensch und Tier sehr ähnlich“, sagt Prof. Weigend, der seit fast 25 Jahren die mannigfaltigen Blumennesselgewächse erforscht. Zuvor sind vielen Wissenschaftlern ihre außerordentlich harten Abwehrhaare aufgefallen, doch niemand hat bislang hinterfragt, aus welchem Material sie eigentlich bestehen. An ihrem eigenen Elektronenmikroskop und mit Hilfe von Wissenschaftlern des Steinmann-Instituts für Geologie, Mineralogie und Paläontologie sowie des Instituts für Anorganische Chemie der Universität Bonn untersuchten die Botaniker die Brennhaare, die einer Injektionsspritze gleichen.

Die Brennhaarspitzen sind ähnlich aufgebaut wie Stahlbeton

Dabei zeigte sich, dass die mechanisch besonders beanspruchten Stellen an den Haarspitzen der Blumennesseln mit Kalziumphosphat verstärkt sind. „Es handelt sich dabei um ein Kompositmaterial, das ähnlich wie Stahlbeton aufgebaut ist“, erläutert Prof. Weigend. Die faserförmige Cellulose bildet als übliches Baumaterial der Pflanzen ein formgebendes Geflecht, in dessen „Maschen“ winzige Kristalle aus Kalziumphosphat eingelagert sind. „Das verleiht den Brennhaaren eine ganz außerordentliche Stabilität“, ist der Wissenschaftler der Universität Bonn überzeugt.

Warum die Blumennesselgewächse sich für diesen Sonderweg entschieden haben, während die meisten Pflanzen zur mechanischen Stabilisierung das glasartige Silikat verwenden, ist noch ein Rätsel. „Ein häufiger Grund für Sonderlösungen in der Evolution ist, dass der Stoffwechsel eines Organismus nur einen bestimmten Weg beschreiten kann“, sagt Prof. Weigend. Doch Blumennesseln können sehr wohl auch Silikat zur Härtung bestimmter Pflanzenteile herstellen. Warum sie sich an den Haarspitzen gerade dem Material verschrieben haben, aus denen auch die Kauwerkzeuge ihrer Fressfeinde bestehen, muss erst noch erforscht werden. „Noch kann man nur über die Anpassungsstrategie spekulieren. Aber es scheint so zu sein, dass Blumennesseln mit gleicher Münze heimzahlen: Zähne gegen Zähne“, schmunzelt der Biologe der Universität Bonn.

Bionik: Brennhaare als Vorbild für Knochenersatzmaterialien

Weitere Forschungsprojekte sollen nun zutage fördern, welche Pflanzen Kalziumphosphat noch für die raue Umwelt hart macht und welche biomechanischen Vorzüge das Material in den grünen Lebewesen hat. Potenziell ist die Entdeckung auch für bionische Anwendungen interessant. „Bei Ersatzmaterial etwa für den Zahnersatz, die Orthopädie oder die Gesichtschirurgie kommt es sehr darauf an, dass es keine Abstoßungsreaktionen auslöst“, sagt Prof. Weigend. Das Kalziumphosphat-Cellulose-Komposit der Blumennesseln könnte ein vielversprechendes natürliches Vorbild für solche Zwecke sein.

Publikation: Hans-Jürgen Ensikat, Thorsten Geisler & Maximilian Weigend: A first report of hydroxylated apatite as structural biomineral in Loasaceae – plants‘ teeth against herbivoren, Scientific Reports, DOI: 10.1038/srep26073

Kontakt für die Medien:

Prof. Dr. Maximilian Weigend
Nees-Institut für Biodiversität der Pflanzen
Universität Bonn
Tel. 0228/732121
E-Mail: mweigend@uni-bonn.de

Johannes Seiler | idw - Informationsdienst Wissenschaft
Weitere Informationen:
http://www.uni-bonn.de

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Wirt oder Gast? Proteomik gibt neue Aufschlüsse über Reaktion von Rifforganismen auf Umweltstress
23.02.2018 | Leibniz-Zentrum für Marine Tropenforschung (ZMT)

nachricht Wie Zellen unterschiedlich auf Stress reagieren
23.02.2018 | Max-Planck-Institut für molekulare Genetik

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Vorstoß ins Innere der Atome

Mit Hilfe einer neuen Lasertechnologie haben es Physiker vom Labor für Attosekundenphysik der LMU und des MPQ geschafft, Attosekunden-Lichtblitze mit hoher Intensität und Photonenenergie zu produzieren. Damit konnten sie erstmals die Interaktion mehrere Photonen in einem Attosekundenpuls mit Elektronen aus einer inneren atomaren Schale beobachten konnten.

Wer die ultraschnelle Bewegung von Elektronen in inneren atomaren Schalen beobachten möchte, der benötigt ultrakurze und intensive Lichtblitze bei genügend...

Im Focus: Attoseconds break into atomic interior

A newly developed laser technology has enabled physicists in the Laboratory for Attosecond Physics (jointly run by LMU Munich and the Max Planck Institute of Quantum Optics) to generate attosecond bursts of high-energy photons of unprecedented intensity. This has made it possible to observe the interaction of multiple photons in a single such pulse with electrons in the inner orbital shell of an atom.

In order to observe the ultrafast electron motion in the inner shells of atoms with short light pulses, the pulses must not only be ultrashort, but very...

Im Focus: Good vibrations feel the force

Eine Gruppe von Forschern um Andrea Cavalleri am Max-Planck-Institut für Struktur und Dynamik der Materie (MPSD) in Hamburg hat eine Methode demonstriert, die es erlaubt die interatomaren Kräfte eines Festkörpers detailliert auszumessen. Ihr Artikel Probing the Interatomic Potential of Solids by Strong-Field Nonlinear Phononics, nun online in Nature veröffentlich, erläutert, wie Terahertz-Laserpulse die Atome eines Festkörpers zu extrem hohen Auslenkungen treiben können.

Die zeitaufgelöste Messung der sehr unkonventionellen atomaren Bewegungen, die einer Anregung mit extrem starken Lichtpulsen folgen, ermöglichte es der...

Im Focus: Good vibrations feel the force

A group of researchers led by Andrea Cavalleri at the Max Planck Institute for Structure and Dynamics of Matter (MPSD) in Hamburg has demonstrated a new method enabling precise measurements of the interatomic forces that hold crystalline solids together. The paper Probing the Interatomic Potential of Solids by Strong-Field Nonlinear Phononics, published online in Nature, explains how a terahertz-frequency laser pulse can drive very large deformations of the crystal.

By measuring the highly unusual atomic trajectories under extreme electromagnetic transients, the MPSD group could reconstruct how rigid the atomic bonds are...

Im Focus: Verlässliche Quantencomputer entwickeln

Internationalem Forschungsteam gelingt wichtiger Schritt auf dem Weg zur Lösung von Zertifizierungsproblemen

Quantencomputer sollen künftig algorithmische Probleme lösen, die selbst die größten klassischen Superrechner überfordern. Doch wie lässt sich prüfen, dass der...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

Von festen Körpern und Philosophen

23.02.2018 | Veranstaltungen

Spannungsfeld Elektromobilität

23.02.2018 | Veranstaltungen

DFG unterstützt Kongresse und Tagungen - April 2018

21.02.2018 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Vorstoß ins Innere der Atome

23.02.2018 | Physik Astronomie

Wirt oder Gast? Proteomik gibt neue Aufschlüsse über Reaktion von Rifforganismen auf Umweltstress

23.02.2018 | Biowissenschaften Chemie

Wie Zellen unterschiedlich auf Stress reagieren

23.02.2018 | Biowissenschaften Chemie

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics