Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Pflanzen: Alarmsignale bei Wassermangel

07.12.2012
Wenn der Boden austrocknet, schicken Pflanzenwurzeln ein Warnsignal zu den Blättern. Würzburger Forscher haben jetzt herausgefunden, wie der Dürre-Alarm auch direkt in den Blättern ausgelöst wird – und zwar schon dann, wenn nur die Luft trockener wird.
Der weltweite Klimawandel sorgt dafür, dass es in vielen Gebieten der Erde weniger regnet. Das kann zu Missernten führen, die besonders in ärmeren Regionen die Nahrungsmittelknappheit weiter verschärfen. Möglicherweise ist die Menschheit in Zukunft also auf neue Pflanzensorten angewiesen, die widerstandsfähiger gegen Trockenheit sind. Wissenschaftler erforschen darum die Mechanismen, mit denen sich Pflanzen gegen Dürre wappnen.

Auf diesem Gebiet arbeiten auch Professor Rainer Hedrich und Peter Ache vom Lehrstuhl für Molekulare Pflanzenphysiologie und Biophysik der Universität Würzburg. Ihre neuesten Erkenntnisse über ein Pflanzenhormon, das bei Wassermangel in Aktion tritt, haben sie jetzt im renommierten Wissenschaftsjournal „Current Biology“ veröffentlicht.

Stresshormon macht Spaltöffnungen dicht

„Aus Experimenten wissen wir, dass die Wurzel eine Information über die aktuelle Lage der Wasserversorgung an den Spross und die Blätter weitergibt“, sagt Hedrich. Als Botenstoff dient dabei das Stresshormon Abszisinsäure, das Trockenheit signalisiert. In den Blättern dringt es in die Schließzellen ein und bewirkt, dass sie die so genannten Spaltöffnungen dicht machen. Durch diese zahlreich vorhandenen Öffnungen nehmen die Blätter Kohlendioxid für die Photosynthese auf, durch diese Öffnungen verlieren sie aber auch Wasser an die Umgebung.

Bislang galt die Lehrmeinung, dass die Schließzellen das Stresshormon Abszisinsäure von außen aufnehmen müssen. Die Würzburger Pflanzenforscher allerdings vermuteten schon seit längerer Zeit, dass die Schließzellen das Hormon auch selbst produzieren können. „Bereits 1889 hat Francis Darwin festgestellt, dass Pflanzen schon allein beim Abfall der Luftfeuchtigkeit die Schotten dicht machen, und zwar noch bevor der Boden austrocknet“, so Hedrich. Folglich müssen die Blätter dazu in der Lage sein, Trockenheit wahrzunehmen und schnell darauf zu reagieren – ohne Beteiligung der Wurzel.

Schließzellen haben die nötigen Gene

Wie das funktioniert, haben die Würzburger Forscher nun herausgefunden. Zuerst analysierten sie mit Kollegen aus Braunschweig das Erbgut in den Schließzellen der Ackerschmalwand, einer genetisch gut verstandenen Modellpflanze. Dabei zeigte sich: Die Schließzellen verfügen über alle Gene, die für die Synthese des Stresshormons Abszisinsäure nötig sind. Zudem steigt bei trockener Luft die Aktivität einiger Schlüsselgene dieses Synthesewegs deutlich an.

Mutante ohne Stresshormon getestet

Dann prüften die Forscher, ob die Hormonproduktion in den Schließzellen stark genug ist, um bei trockener Luft die Spaltöffnungen zu verschließen. Dazu verwendeten sie Pflanzen, die wegen eines genetischen Fehlers überhaupt keine Abszisinsäure herstellen können. „Die Blätter dieser Mutanten welken in trockener Luft in weniger als drei Stunden“, sagt Peter Ache.

Die Wissenschaftler versetzten die Schließzellen der ansonsten völlig abszisinsäure-freien Mutante wieder in die Lage, das Hormon zu produzieren. Daraufhin blieb die Pflanze „standfest“; ihre Blätter wurden in trockener Luft nicht welk. Das zeigt: „Die Fähigkeit der Schließzellen, bei Bedarf selbst Abszisinsäure herzustellen, ist essentiell und ausreichend für die Pflanze, um einem Abfall der Luftfeuchtigkeit zu widerstehen“, erklärt Rainer Hedrich.

Suche nach dem Sensor

Die Suche nach Genen, die Pflanzen widerstandsfähiger gegen Stress machen, ist Gegenstand des Bayerischen Forschungsverbunds ForPlanta „Pflanzen fit für die Zukunft“, dem Hedrichs Team angehört. „Als nächstes wollen wir herausfinden, wie Pflanzen die Änderung der Luftfeuchtigkeit wahrnehmen und wie dieser potenzielle Sensor die Synthese von Abszisinsäure in Gang setzt“, sagt der Würzburger Biophysiker. Neben der Ackerschmalwand sollen dann auch Dattelpalmen untersucht werden, weil sie an extrem trockenen und heißen Standorten gedeihen und dabei sogar beachtliche Erträge bringen.

“The Stomatal Response to Reduced Relative Humidity Requires Guard Cell-Autonomous ABA Synthesis”, Hubert Bauer, Peter Ache, Silke Lautner, Joerg Fromm, Wolfram Hartung, Khaled A.S. Al-Rasheid, Sophia Sonnewald, Uwe Sonnewald, Susanne Kneitz, Nicole Lachmann, Ralf R. Mendel, Florian Bittner, Alistair M. Hetherington, and Rainer Hedrich. Current Biology, online publiziert am 6. Dezember 2012, DOI: 10.1016/j.cub.2012.11.022

Kontakt

Prof. Dr. Rainer Hedrich, Lehrstuhl für Molekulare Pflanzenphysiologie und Biophysik der Universität Würzburg, T (0931) 31-86100, hedrich@botanik.uni-wuerzburg.de

Robert Emmerich | idw
Weitere Informationen:
http://www.uni-wuerzburg.de

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Symbiose-Bakterien: Vom blinden Passagier zum Leibwächter des Wollkäfers
28.04.2017 | Johannes Gutenberg-Universität Mainz

nachricht Forschungsteam entdeckt Mechanismus zur Aktivierung der Reproduktion bei Pflanzen
28.04.2017 | Universität Hamburg

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: TU Chemnitz präsentiert weltweit einzigartige Pilotanlage für nachhaltigen Leichtbau

Wickelprinzip umgekehrt: Orbitalwickeltechnologie soll neue Maßstäbe in der großserientauglichen Fertigung komplexer Strukturbauteile setzen

Mitarbeiterinnen und Mitarbeiter des Bundesexzellenzclusters „Technologiefusion für multifunktionale Leichtbaustrukturen" (MERGE) und des Instituts für...

Im Focus: Smart Wireless Solutions: EU-Großprojekt „DEWI“ liefert Innovationen für eine drahtlose Zukunft

58 europäische Industrie- und Forschungspartner aus 11 Ländern forschten unter der Leitung des VIRTUAL VEHICLE drei Jahre lang, um Europas führende Position im Bereich Embedded Systems und dem Internet of Things zu stärken. Die Ergebnisse von DEWI (Dependable Embedded Wireless Infrastructure) wurden heute in Graz präsentiert. Zu sehen war eine Fülle verschiedenster Anwendungen drahtloser Sensornetzwerke und drahtloser Kommunikation – von einer Forschungsrakete über Demonstratoren zur Gebäude-, Fahrzeug- oder Eisenbahntechnik bis hin zu einem voll vernetzten LKW.

Was vor wenigen Jahren noch nach Science-Fiction geklungen hätte, ist in seinem Ansatz bereits Wirklichkeit und wird in Zukunft selbstverständlicher Teil...

Im Focus: Weltweit einzigartiger Windkanal im Leipziger Wolkenlabor hat Betrieb aufgenommen

Am Leibniz-Institut für Troposphärenforschung (TROPOS) ist am Dienstag eine weltweit einzigartige Anlage in Betrieb genommen worden, mit der die Einflüsse von Turbulenzen auf Wolkenprozesse unter präzise einstellbaren Versuchsbedingungen untersucht werden können. Der neue Windkanal ist Teil des Leipziger Wolkenlabors, in dem seit 2006 verschiedenste Wolkenprozesse simuliert werden. Unter Laborbedingungen wurden z.B. das Entstehen und Gefrieren von Wolken nachgestellt. Wie stark Luftverwirbelungen diese Prozesse beeinflussen, konnte bisher noch nicht untersucht werden. Deshalb entstand in den letzten Jahren eine ergänzende Anlage für rund eine Million Euro.

Die von dieser Anlage zu erwarteten neuen Erkenntnisse sind wichtig für das Verständnis von Wetter und Klima, wie etwa die Bildung von Niederschlag und die...

Im Focus: Nanoskopie auf dem Chip: Mikroskopie in HD-Qualität

Neue Erfindung der Universitäten Bielefeld und Tromsø (Norwegen)

Physiker der Universität Bielefeld und der norwegischen Universität Tromsø haben einen Chip entwickelt, der super-auflösende Lichtmikroskopie, auch...

Im Focus: Löschbare Tinte für den 3-D-Druck

Im 3-D-Druckverfahren durch Direktes Laserschreiben können Mikrometer-große Strukturen mit genau definierten Eigenschaften geschrieben werden. Forscher des Karlsruher Institus für Technologie (KIT) haben ein Verfahren entwickelt, durch das sich die 3-D-Tinte für die Drucker wieder ‚wegwischen‘ lässt. Die bis zu hundert Nanometer kleinen Strukturen lassen sich dadurch wiederholt auflösen und neu schreiben - ein Nanometer entspricht einem millionstel Millimeter. Die Entwicklung eröffnet der 3-D-Fertigungstechnik vielfältige neue Anwendungen, zum Beispiel in der Biologie oder Materialentwicklung.

Beim Direkten Laserschreiben erzeugt ein computergesteuerter, fokussierter Laserstrahl in einem Fotolack wie ein Stift die Struktur. „Eine Tinte zu entwickeln,...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Internationaler Tag der Immunologie - 29. April 2017

28.04.2017 | Veranstaltungen

Kampf gegen multiresistente Tuberkulose – InfectoGnostics trifft MYCO-NET²-Partner in Peru

28.04.2017 | Veranstaltungen

123. Internistenkongress: Traumata, Sprachbarrieren, Infektionen und Bürokratie – Herausforderungen

27.04.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Über zwei Millionen für bessere Bordnetze

28.04.2017 | Förderungen Preise

Symbiose-Bakterien: Vom blinden Passagier zum Leibwächter des Wollkäfers

28.04.2017 | Biowissenschaften Chemie

Wie Pflanzen ihre Zucker leitenden Gewebe bilden

28.04.2017 | Biowissenschaften Chemie