Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Wie Pflanzen sich abkühlen - Forscher entdecken neuen Mechanismus zur Kontrolle des Wasserhaushalts von Blättern

13.07.2010
Gerade bei sommerlicher Hitze müssen Pflanzen mit ihrem Wasser haushalten. Über verschließbare Poren, sogenannte Spaltöffnungen, an der Blattunterseite wird Wasserdampf kontrolliert nach außen abgegeben und der Wassertransport durch die Pflanze reguliert.

Im renommierten Fachjournal PNAS (Early Edition) berichten Jülicher Forscher nun, wie die Spaltöffnungen auf Reize der Umwelt reagieren.

„Wir haben einen zentralen Mechanismen untersucht, wie die Pflanze mit ihrer Umwelt in Wechselwirkung tritt“, sagt Dr. Roland Pieruschka vom Jülicher Institut für Chemie und Dynamik der Geosphäre. Zusammen mit Kollegen der Carnegie Institution in Stanford haben wir nun festgestellt, dass ein direkter biophysikalischer Prozess den Wasserhaushalt steuert, der von Photosynthese oder Sensorzellen unabhängig ist.

Fällt Sonnenstrahlung auf eine Pflanze, wird die Energie der Strahlung im Blattinneren absorbiert und auf das Blattwasser übertragen, so dass dieses verdunstet. Der Wasserdampf verteilt sich im hochporösen Blattinneren und kann an der Innenseite der Blatthaut (Epidermis) kondensieren und einen Mechanismus induzieren, der die in der Epidermis befindlichen Poren öffnet und schließt.

„Bislang ging man davon aus, dass Wasser vor allem direkt in der Kammer unter der Spaltöffnung verdunstet“, erklärt Pieruschka. „Unser Ergebnis zeigt, dass das ganze Blatt die Energie aufnimmt, somit mehr Wasserdampf entsteht und die Spaltöffnungen wirklich nur die Tore nach außen sind.“

Im Experiment haben die Forscher die Blätter von Sonnenblumen im Labor untersucht. Dabei untersuchten sie deren Reaktion auf Infrarot-Licht, also Wärmestrahlung, im Vergleich zum sichtbaren Licht, das die Pflanze auch für die Photosynthese nutzt. Für die Funktion der Spaltöffnungen war der Gesamtenergieeintrag des eingestrahlten Lichtes entscheidend.

Die Veröffentlichung bei PRL:
Pieruschka at al., Control of transpiration by radiation
http://www.pnas.org/cgi/doi/10.1073/pnas.0913177107
Webseite der Arbeitsgruppe:
http://www.fz-juelich.de/ibn/Ultra_High_Resolution
Pressemitteilung der Carnegie Institution for Science (englisch)
http://www.eurekalert.org/pub_releases/2010-07/ci-pm070910.php
Ansprechpartner:
Dr. Roland Pieruschka
Tel. : +49 2461 61 6173
r.pieruschka@fz-juelich.de
Pressekontakt:
Kosta Schinarakis,
Tel.: 02461-61-4771
k.schinarakis@fz-juelich.de
Das Forschungszentrum Jülich…
… betreibt interdisziplinäre Spitzenforschung zur Lösung großer gesellschaftlicher Herausforderungen in den Bereichen Gesundheit, Energie und Umwelt sowie Informationstechnologie. Kombiniert mit den beiden Schlüsselkompetenzen Physik und Supercomputing werden in Jülich sowohl langfristige, grundlagenorientierte und fächerübergreifende Beiträge zu Naturwissenschaften und Technik erarbeitet als auch konkrete technologische Anwendungen. Mit rund 4 400 Mitarbeiterinnen und Mitarbeitern gehört Jülich, Mitglied der Helmholtz-Gemeinschaft, zu den größten Forschungszentren Europas.

Annette Stettien | Forschungszentrum Jülich
Weitere Informationen:
http://www.fz-juelich.de

Weitere Berichte zu: Blattinneren Carnegie Epidermis Pflanze Photosynthese Pore Wasserdampf Wasserhaushalt

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Wirt oder Gast? Proteomik gibt neue Aufschlüsse über Reaktion von Rifforganismen auf Umweltstress
23.02.2018 | Leibniz-Zentrum für Marine Tropenforschung (ZMT)

nachricht Wie Zellen unterschiedlich auf Stress reagieren
23.02.2018 | Max-Planck-Institut für molekulare Genetik

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Vorstoß ins Innere der Atome

Mit Hilfe einer neuen Lasertechnologie haben es Physiker vom Labor für Attosekundenphysik der LMU und des MPQ geschafft, Attosekunden-Lichtblitze mit hoher Intensität und Photonenenergie zu produzieren. Damit konnten sie erstmals die Interaktion mehrere Photonen in einem Attosekundenpuls mit Elektronen aus einer inneren atomaren Schale beobachten konnten.

Wer die ultraschnelle Bewegung von Elektronen in inneren atomaren Schalen beobachten möchte, der benötigt ultrakurze und intensive Lichtblitze bei genügend...

Im Focus: Attoseconds break into atomic interior

A newly developed laser technology has enabled physicists in the Laboratory for Attosecond Physics (jointly run by LMU Munich and the Max Planck Institute of Quantum Optics) to generate attosecond bursts of high-energy photons of unprecedented intensity. This has made it possible to observe the interaction of multiple photons in a single such pulse with electrons in the inner orbital shell of an atom.

In order to observe the ultrafast electron motion in the inner shells of atoms with short light pulses, the pulses must not only be ultrashort, but very...

Im Focus: Good vibrations feel the force

Eine Gruppe von Forschern um Andrea Cavalleri am Max-Planck-Institut für Struktur und Dynamik der Materie (MPSD) in Hamburg hat eine Methode demonstriert, die es erlaubt die interatomaren Kräfte eines Festkörpers detailliert auszumessen. Ihr Artikel Probing the Interatomic Potential of Solids by Strong-Field Nonlinear Phononics, nun online in Nature veröffentlich, erläutert, wie Terahertz-Laserpulse die Atome eines Festkörpers zu extrem hohen Auslenkungen treiben können.

Die zeitaufgelöste Messung der sehr unkonventionellen atomaren Bewegungen, die einer Anregung mit extrem starken Lichtpulsen folgen, ermöglichte es der...

Im Focus: Good vibrations feel the force

A group of researchers led by Andrea Cavalleri at the Max Planck Institute for Structure and Dynamics of Matter (MPSD) in Hamburg has demonstrated a new method enabling precise measurements of the interatomic forces that hold crystalline solids together. The paper Probing the Interatomic Potential of Solids by Strong-Field Nonlinear Phononics, published online in Nature, explains how a terahertz-frequency laser pulse can drive very large deformations of the crystal.

By measuring the highly unusual atomic trajectories under extreme electromagnetic transients, the MPSD group could reconstruct how rigid the atomic bonds are...

Im Focus: Verlässliche Quantencomputer entwickeln

Internationalem Forschungsteam gelingt wichtiger Schritt auf dem Weg zur Lösung von Zertifizierungsproblemen

Quantencomputer sollen künftig algorithmische Probleme lösen, die selbst die größten klassischen Superrechner überfordern. Doch wie lässt sich prüfen, dass der...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

Von festen Körpern und Philosophen

23.02.2018 | Veranstaltungen

Spannungsfeld Elektromobilität

23.02.2018 | Veranstaltungen

DFG unterstützt Kongresse und Tagungen - April 2018

21.02.2018 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Vorstoß ins Innere der Atome

23.02.2018 | Physik Astronomie

Wirt oder Gast? Proteomik gibt neue Aufschlüsse über Reaktion von Rifforganismen auf Umweltstress

23.02.2018 | Biowissenschaften Chemie

Wie Zellen unterschiedlich auf Stress reagieren

23.02.2018 | Biowissenschaften Chemie

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics