Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Pfade ausleuchten im Fischgehirn

24.07.2017

Wissenschaftler des Max-Planck-Instituts für Neurobiologie in Martinsried haben mit “Optobow” eine Methode entwickelt, die es ermöglicht, allein mittels Licht miteinander verbundene Nervenzellen im lebenden Gehirn zu entdecken. Mit der nun in "Nature Communications" publizierten Optobow-Methode können einzelne Nervenzellen unter dem Mikroskop aktiviert werden; das Aufleuchten benachbarter Zellen zeigt dann den Weg des Informationsflusses. Selbst im Dickicht des Nervensystems werden Form und Verbindungen der Zellen sichtbar. Funktionelle Schaltkreise und die beteiligten Zelltypen können nun im lebenden Gehirn untersucht werden.

Moderne Methoden geben immer detailliertere Einblicke in den Aufbau und die Funktionen des Gehirns. Durch das Mikroskop zeigt sich, wann und wo Nervenzellen bei einer bestimmten Aktion aktiv sind. Ob die aktiven Zellen jedoch untereinander verbunden sind, oder in welcher Reihenfolge sie Informationen austauschen, bleibt dabei meist unsichtbar. Solche Informationen konnten bisher nur teilweise und mit großem Aufwand mit Methoden der Elektrophysiologie oder der Elektronenmikroskopie gewonnen werden.


Forscher können einzelne Nervenzellen im Zebrafischgehirn mit Licht aktivieren (magenta) und beobachten, welche benachbarten Zellen mit der Zelle im gleichen Schaltkreis verbunden sind (gelb).

© Max-Planck-Institut für Neurobiologie / Förster

In der Elektrophysiologie wird die Aktivität benachbarter Zellen mit Hilfe hauchdünner Nadeln gemessen. Dies ist jedoch in sehr dichtem oder tiefem Hirngewebe kaum möglich und lange Verbindungswege können nur schwierig nachvollzogen werden. Zudem können nur Impulse von wenigen Zellen gleichzeitig gemessen werden.

Bei modernen Elektronenmikroskopie-Verfahren (Konnektomik) werden in einem präparierten Gehirn alle Nervenzellen und ihre Verbindungen Schicht für Schicht von einem Rasterelektronenmikroskop erfasst und dann am Computer rekonstruiert. So werden zwar Zellverbindungen sichtbar, die dynamische Informationsweitergabe eines lebenden Gehirns bleibt dabei jedoch verborgen.

Beide Ansätze haben somit deutliche Limitierungen. „Wir haben nach einem Weg gesucht, um die Verbindungen und Informationsweitergabe von Nervenzellen im aktiven Gehirn beobachten zu können, ohne das Gehirn zu schädigen, ja, es nicht einmal zu berühren“, erklärt Dominique Förster. Mit dieser Motivation entwickelten Förster und seine Kollegen aus der Abteilung von Herwig Baier am Max-Planck-Institut für Neurobiologie die Optobow-Methode.

Farbmarkierungen für aktive Zellen

Mit Hilfe gentechnischer Verfahren schleusten die Forscher den lichtempfindlichen "ChrimsonR"-Ionenkanal in einzelne Nervenzellen im Gehirn von Zebrafischlarven ein. Die Nervenzellen in der Umgebung dieser ChrimsonR-Zellen brachten die Wissenschaftler dazu, "GCaMP6", einen sogenannten Kalzium-Indikator, zu produzieren. An GCaMP6 gekoppelt war wiederum ein hellfluoreszierendes Protein, mit dem die Forscher die Form der Nervenzelle einschließlich ihrer feinen Verästelungen und Synapsen sichtbar machen konnten.

„Das klingt erst einmal kompliziert, und die Entwicklung hat auch einiges an Zeit gekostet – aber das Ergebnis ist beeindruckend“, freut sich Dominique Förster über die neue Methode. Da Zebrafischlarven und auch ihr Gehirn durchsichtig sind, konnten die Max-Planck-Forscher die ChrimsonR-Zellen allein durch das Anstrahlen der Fische mit Licht aktivieren. Dass das Licht dabei gezielt auf einzelne Nervenzellen auch tief im Gehirn traf, war erst durch eine fast zeitgleich von Labor-Kollegen entwickelte zweite Methode möglich. (Mehr über diese Zwei-Photonen holographische Optogenetik findet sich über den Link am Ende des Textes.)

Die Forscher konnten somit einzelne ChrimsonR-Zellen im lebenden Fischgehirn durch Licht aktivieren. Löste die ChrimsonR-Zelle ein Aktionspotential in einer Nachbarzelle aus, reagierte dort der Kalzium-Indikator auf den damit verbundenen Ionen-Einstrom und das fluoreszierende Protein ließ die Zelle farblich aus der Masse hervortreten. So konnten die Wissenschaftler live unter dem Mikroskop beobachten, welche Nervenzelltypen wann und wo nach Aktivierung der Ausgangszelle aktiviert wurden.

Neue Methode mit großem Potential

Wie nützlich die neue Methode ist, konnten die Forscher bereits in ihren ersten Versuchen belegen: Im untersuchten Bereich des Zebrafischgehirns konnten sie zeigen, dass eine Information als Abbild in dem Gehirnbereich bleibt, bevor sie an andere Bereiche weitergeleitet wird. „Ich wüsste nicht, mit welcher anderen lichtmikroskopischen Methode wir diese Verbindung hätten entdecken können“, freut sich auch Herwig Baier, der Leiter der Studie.

„Mit Optobow können wir nun erstmals im Gehirn eines lebenden, aktiven Tiers beobachten, welche Nervenzellen untereinander verschaltet sind, wenn zum Beispiel ein Verhaltenskommando im Gehirn generiert wird.“ Optobow sollte das Identifizieren der zellulären Komponenten neuronaler Schaltkreise und auch das Verständnis ihrer Funktion deutlich vorantreiben und dadurch Elektrophysiologie und Konnektomik ergänzen. Auch dynamische Veränderungen in den Zellverbindungen, wie zum Beispiel während des Lernens und der Entwicklung, können nun leichter erforscht werden.

ORIGINALVERÖFFENTLICHUNG
Dominique Förster, Marco Dal Maschio, Eva Laurell, Herwig Baier
An optogenetic toolbox for unbiased discovery of functionally connected cells in neural circuits
Nature Communications, online am 24. Juli 2017

KONTAKT
Dr. Stefanie Merker
Presse- und Öffentlichkeitsarbeit
Max-Planck-Institut für Neurobiologie, Martinsried
Tel.: 089 8578 - 3514
E-Mail: merker@neuro.mpg.de

Prof. Dr. Herwig Baier
Abteilung Gene – Schaltkreise – Verhalten
Max-Planck-Institut für Neurobiologie, Martinsried
Tel.: 089 8578 3200
Email: hbaier@neuro.mpg.de

Weitere Informationen:

http://www.neuro.mpg.de/baier/de - Webseite der Abteilung von Prof. Herwig Baier

Dr. Stefanie Merker | Max-Planck-Institut für Neurobiologie

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Multifunktionaler Mikroschwimmer transportiert Fracht und zerstört sich selbst
26.04.2018 | Max-Planck-Institut für Intelligente Systeme

nachricht Der lange Irrweg der ADP Ribosylierung
26.04.2018 | Max-Planck-Institut für Biologie des Alterns

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Why we need erasable MRI scans

New technology could allow an MRI contrast agent to 'blink off,' helping doctors diagnose disease

Magnetic resonance imaging, or MRI, is a widely used medical tool for taking pictures of the insides of our body. One way to make MRI scans easier to read is...

Im Focus: Fraunhofer ISE und teamtechnik bringen leitfähiges Kleben für Siliciumsolarzellen zu Industriereife

Das Kleben der Zellverbinder von Hocheffizienz-Solarzellen im industriellen Maßstab ist laut dem Fraunhofer-Institut für Solare Energiesysteme ISE und dem Anlagenhersteller teamtechnik marktreif. Als Ergebnis des gemeinsamen Forschungsprojekts »KleVer« ist die Klebetechnologie inzwischen so weit ausgereift, dass sie als alternative Verschaltungstechnologie zum weit verbreiteten Weichlöten angewendet werden kann. Durch die im Vergleich zum Löten wesentlich niedrigeren Prozesstemperaturen können vor allem temperatursensitive Hocheffizienzzellen schonend und materialsparend verschaltet werden.

Dabei ist der Durchsatz in der industriellen Produktion nur geringfügig niedriger als beim Verlöten der Zellen. Die Zuverlässigkeit der Klebeverbindung wurde...

Im Focus: BAM@Hannover Messe: Innovatives 3D-Druckverfahren für die Raumfahrt

Auf der Hannover Messe 2018 präsentiert die Bundesanstalt für Materialforschung und -prüfung (BAM), wie Astronauten in Zukunft Werkzeug oder Ersatzteile per 3D-Druck in der Schwerelosigkeit selbst herstellen können. So können Gewicht und damit auch Transportkosten für Weltraummissionen deutlich reduziert werden. Besucherinnen und Besucher können das innovative additive Fertigungsverfahren auf der Messe live erleben.

Pulverbasierte additive Fertigung unter Schwerelosigkeit heißt das Projekt, bei dem ein Bauteil durch Aufbringen von Pulverschichten und selektivem...

Im Focus: BAM@Hannover Messe: innovative 3D printing method for space flight

At the Hannover Messe 2018, the Bundesanstalt für Materialforschung und-prüfung (BAM) will show how, in the future, astronauts could produce their own tools or spare parts in zero gravity using 3D printing. This will reduce, weight and transport costs for space missions. Visitors can experience the innovative additive manufacturing process live at the fair.

Powder-based additive manufacturing in zero gravity is the name of the project in which a component is produced by applying metallic powder layers and then...

Im Focus: IWS-Ingenieure formen moderne Alu-Bauteile für zukünftige Flugzeuge

Mit Unterdruck zum Leichtbau-Flugzeug

Ingenieure des Fraunhofer-Instituts für Werkstoff- und Strahltechnik (IWS) in Dresden haben in Kooperation mit Industriepartnern ein innovatives Verfahren...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

Konferenz »Encoding Cultures. Leben mit intelligenten Maschinen« | 27. & 28.04.2018 ZKM | Karlsruhe

26.04.2018 | Veranstaltungen

Konferenz zur Marktentwicklung von Gigabitnetzen in Deutschland

26.04.2018 | Veranstaltungen

infernum-Tag 2018: Digitalisierung und Nachhaltigkeit

24.04.2018 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

IFAT 2018: Phosphorgewinnung aus Klärschlamm und andere regionale Nutzungskonzepte für Biomassen

26.04.2018 | Messenachrichten

Der Mensch im Zentrum: wandlungsfähige Produktion in der Industrie 4.0

26.04.2018 | Informationstechnologie

Konferenz »Encoding Cultures. Leben mit intelligenten Maschinen« | 27. & 28.04.2018 ZKM | Karlsruhe

26.04.2018 | Veranstaltungsnachrichten

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics