Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Perfekte Imperfektion: Artenübergreifender Vergleich biologischer Oberflächen entwickelt

03.05.2016

Es liegt auf der Hand: Mottenaugen und Schlangenhaut sind grundverschieden. Forscher der Christian-Albrechts-Universität zu Kiel (CAU) haben trotzdem genauer hingeschaut und die vermeintlichen „Äpfel und Birnen“ jetzt auf einen gemeinsamen Nenner gebracht. Mit einer neuentwickelten Methode eröffnen sie einen völlig neuen, vergleichenden Blick auf biologische Oberflächen und kommen so der Lösung näher, wie diese Oberflächen funktionieren. Ihre Ergebnisse haben Dr. Alexander Kovalev, Dr. Alexander Filippov und Professor Stanislav Gorb vom Zoologischen Institut der Kieler Universität in der aktuellen Ausgabe des Fachjournals „Applied Physics A“ veröffentlicht.

Die einen demonstrieren eine Reduktion der Lichtreflektion, die anderen sind besonders wasserabweisend oder halten vor allem Reibung stand. Oberflächen im Tierreich sind an ihre Umgebung angepasst und bieten dem Tier, welches sie umhüllen, einen größtmöglichen evolutionären Vorteil. Wie und warum genau diese unterschiedlichen Strukturen entstehen und wie sie im Detail aufgebaut sind, stellt die Wissenschaft aber auch heute noch vor viele Rätsel.


Aufnahmen der Schlangenhaut einer Morelia viridis im Rastertunnelmikroskop. Die markierten Bereiche zeigen typische asymmetrische Anordnungen von Erhebungen.

Copyright: AG Gorb


Mikroskopaufnahme vom Mottenauge am Beispiel der Manduca sexta. Die dunklen Bereiche sind jeweils hochsymmetrische Domänen.

Copyright: AG Gorb

Aktuelle Arbeiten blicken mittels modernster Forschungstechniken bis in die Zellstrukturen hinein. Normalerweise beschränkte man sich dabei bislang aber auf Vergleiche innerhalb einer Spezies und schaute sich nur kleine Bereiche der Oberflächen näher an, berichtet Gorb: „Wir haben uns deshalb gefragt, welche strukturellen Unterschiede den verschiedenen Arten im Vergleich zu Grunde liegen. Dafür haben wir den typischen Blickwinkel der Biologie verändert und uns größere Oberflächenabschnitte verschiedener Arten vorgenommen.“ Derartige arten- beziehungsweise materialübergreifende Studien sind in anderen technischen oder anorganischen Fachgebieten übliches Tagwerk. In der Biologie hingegen sei diese Methode vollkommen neu, so Gorb weiter.

Auf die Idee brachte sie die Dekoration auf dem eigenen Institutsflur. Dort sind rasterelektronenmikroskopische Aufnahmen von Mottenaugen und Schlangenhaut ausgestellt. Irgendwann fielen dem theoretischen Physiker Filippov Ähnlichkeiten zwischen den Aufnahmen auf, die die Oberflächen auf wenige Millionstel Millimeter aufgelöst zeigen. Zu sehen sind Erhebungen und Einsenkungen, die für das menschliche Auge einer gewissen Ordnung zu folgen scheinen. Mit Methoden, die normalerweise in der Kristallographie benutzt werden, erkannten die Wissenschaftler schließlich jene Muster, durch die sich beide Arten unterschieden. „Die Struktur von Mottenaugen ist perfekt geordnet. Außer hohe Abstandsregelmäßigkeit zwischen der Erhebungen existieren bevorzugte Richtungen der Strukturanordnung in den meisten kleinen Bereichen“, erklärt Biophysiker und Erstautor der Studie Kovalev. Die strenge Symmetrie der Augenstruktur war der Wissenschaft bereits bekannt. Dass sie sich aber bis auf Nanoebene durchsetzt und sich über die gesamte Oberfläche, in sogenannten Domänen, wiederholt, sei eine wichtige neue Erkenntnis.

Welcher Symmetrie folgt nun die Oberfläche der Schlangenhaut, die auf den ersten Blick ähnlich, vielleicht sogar noch perfekter geordnet erscheint? „Im Vergleich mit der Struktur des Mottenauges ist die Struktur der Schlangenhaut ungeordnet“, erklärt dazu Kovalev. Und weiter: „Konzentrieren wir uns auf eine Einsenkung in der Haut, analog zu einer Erhebung im Auge, sehen wir nur eine diffuse Wolke weiterer Einsenkungen in der näheren Umgebung. Weder die Existenz besonderer Richtungen noch der reguläre Anordnung lässt sich definieren. Diese ungeordnete Struktur setzt sich über die gesamte Oberfläche fort.“

Für sich genommen sind die Erkenntnisse über die geordnete Augenstruktur zum einen und über die ungeordnete Hautstruktur zum anderen nicht sehr aussagekräftig. Durch den gemeinsamen Nenner, also beide Strukturen mit gleichem Auflösungsgrad zu untersuchen, werde allerdings erstmals ein Vergleich grundverschiedener Strukturen möglich, erläutert Gorb: „Allerdings ist der ‚zufällige‘ Ordnungsgrad nicht zufällig, sondern durch Evolution entstanden. Das würde bedeuten, die perfekte Ordnung verleiht der Motte ihre hervorragende Sehkraft im Dunkeln, während die imperfekte Ordnung der Schlangenhaut für beste Reibungseigenschaften sorgt.“ Das klingt auch logisch, wenn man gemäß physikalischer Gesetze bedenkt, dass für gutes Sehen eine symmetrische Struktur notwendig ist, für gute Reibungseigenschaften der Kontakt zum Untergrund aber so gering wie möglich sein sollte.

Wären die Kieler Forscher der üblichen Herangehensweise gefolgt und hätten Schlangen mit Schlangen und Motten mit Motten verglichen, wäre der Ordnung der Elemente auf Nanoebene kaum Bedeutung zugesprochen worden. „Im Vergleich der Arten sehen wir nun, dass der Schlüssel zum Verständnis von Oberflächenfunktionen bereits auf der kleinsten Ebene liegen muss. Jede biologische Oberfläche ist an ihre Umwelt angepasst, und diese Anpassungen spiegeln in der Anordnung ihrer kleinsten Elemente in einem bestimmten perfekten oder eben imperfekten Grad wieder“, schließt Gorb.

Originalpublikation
A. Kovalev, A. Filippov, S.N. Gorb. „Correlation analysis of symmetry breaking in the surface nanostructure ordering: case study of the ventral scale of the snake Morelia viridis”; Applied Physics A 122:253
DOI: 10.1007/s00339-016-9795-2

Fotos stehen zum Download bereit:
http://www.uni-kiel.de/download/pm/2016/2016-137-1.jpg
Der Motte ins Auge geschaut. Kieler Wissenschaftler erforschen die Nanostruktur von Tierzellen.
Foto, Copyright: Eulitz/Gorb

http://www.uni-kiel.de/download/pm/2016/2016-137-2.jpg
Der Institutsflur weckte ihr Interesse an der Forschungsfrage: Stanislav Gorb (links) und Alexander Kovalev (rechts).
Foto, Copyright: Claudia Eulitz/CAU

http://www.uni-kiel.de/download/pm/2016/2016-137-3.jpg
Aufnahmen der Schlangenhaut einer Morelia viridis im Rastertunnelmikroskop. Die markierten Bereiche zeigen typische asymmetrische Anordnungen von Erhebungen.
Copyright: AG Gorb

http://www.uni-kiel.de/download/pm/2016/2016-137-4.jpg
Mikroskopaufnahme vom Mottenauge am Beispiel der Manduca sexta. Die dunklen Bereiche sind jeweils hochsymmetrische Domänen.
Copyright: AG Gorb

Kontakt
Prof. Dr. Stanislav N. Gorb
Zoological Institute of the University of Kiel
Tel. +49-431/880-4513
sgorb@zoologie.uni-kiel.de
http://www.uni-kiel.de/zoologie/gorb/topics.html

Christian-Albrechts-Universität zu Kiel
Presse, Kommunikation und Marketing, Dr. Boris Pawlowski, Text: Claudia Eulitz
Postanschrift: D-24098 Kiel, Telefon: (0431) 880-2104, Telefax: (0431) 880-1355
E-Mail: presse@uv.uni-kiel.de, Internet: www.uni-kiel.de Twitter: www.twitter.com/kieluni, Facebook: www.facebook.com/kieluni

Weitere Informationen:

http://www.uni-kiel.de/pressemeldungen/index.php?pmid=2016-137-motten-und-schlan...

Dr. Boris Pawlowski | Christian-Albrechts-Universität zu Kiel

Weitere Berichte zu: Biologie Motte Nanoebene Oberfläche Oberflächen Schlangenhaut

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Zirkuläre RNA wird in Proteine übersetzt
24.03.2017 | Max-Delbrück-Centrum für Molekulare Medizin in der Helmholtz-Gemeinschaft

nachricht Wegweisende Erkenntnisse für die Biomedizin: NAD⁺ hilft bei Reparatur geschädigter Erbinformationen
24.03.2017 | Universität Bayreuth

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Wegweisende Erkenntnisse für die Biomedizin: NAD⁺ hilft bei Reparatur geschädigter Erbinformationen

Eine internationale Forschergruppe mit dem Bayreuther Biochemiker Prof. Dr. Clemens Steegborn präsentiert in 'Science' neue, für die Biomedizin wegweisende Forschungsergebnisse zur Rolle des Moleküls NAD⁺ bei der Korrektur von Schäden am Erbgut.

Die Zellen von Menschen und Tieren können Schäden an der DNA, dem Träger der Erbinformation, bis zu einem gewissen Umfang selbst reparieren. Diese Fähigkeit...

Im Focus: Designer-Proteine falten DNA

Florian Praetorius und Prof. Hendrik Dietz von der Technischen Universität München (TUM) haben eine neue Methode entwickelt, mit deren Hilfe sie definierte Hybrid-Strukturen aus DNA und Proteinen aufbauen können. Die Methode eröffnet Möglichkeiten für die zellbiologische Grundlagenforschung und für die Anwendung in Medizin und Biotechnologie.

Desoxyribonukleinsäure – besser bekannt unter der englischen Abkürzung DNA – ist die Trägerin unserer Erbinformation. Für Prof. Hendrik Dietz und Florian...

Im Focus: Fliegende Intensivstationen: Ultraschallgeräte in Rettungshubschraubern können Leben retten

Etwa 21 Millionen Menschen treffen jährlich in deutschen Notaufnahmen ein. Im Kampf zwischen Leben und Tod zählt für diese Patienten jede Minute. Wenn sie schon kurz nach dem Unfall zielgerichtet behandelt werden können, verbessern sich ihre Überlebenschancen erheblich. Damit Notfallmediziner in solchen Fällen schnell die richtige Diagnose stellen können, kommen in den Rettungshubschraubern der DRF Luftrettung und zunehmend auch in Notarzteinsatzfahrzeugen mobile Ultraschallgeräte zum Einsatz. Experten der Deutschen Gesellschaft für Ultraschall in der Medizin e.V. (DEGUM) schulen die Notärzte und Rettungsassistenten.

Mit mobilen Ultraschallgeräten können Notärzte beispielsweise innere Blutungen direkt am Unfallort identifizieren und sie bei Bedarf auch für Untersuchungen im...

Im Focus: Gigantische Magnetfelder im Universum

Astronomen aus Bonn und Tautenburg in Thüringen beobachteten mit dem 100-m-Radioteleskop Effelsberg Galaxienhaufen, das sind Ansammlungen von Sternsystemen, heißem Gas und geladenen Teilchen. An den Rändern dieser Galaxienhaufen fanden sie außergewöhnlich geordnete Magnetfelder, die sich über viele Millionen Lichtjahre erstrecken. Sie stellen die größten bekannten Magnetfelder im Universum dar.

Die Ergebnisse werden am 22. März in der Fachzeitschrift „Astronomy & Astrophysics“ veröffentlicht.

Galaxienhaufen sind die größten gravitativ gebundenen Strukturen im Universum, mit einer Ausdehnung von etwa zehn Millionen Lichtjahren. Im Vergleich dazu ist...

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Rund 500 Fachleute aus Wissenschaft und Wirtschaft diskutierten über technologische Zukunftsthemen

24.03.2017 | Veranstaltungen

Lebenswichtige Lebensmittelchemie

23.03.2017 | Veranstaltungen

Die „Panama Papers“ aus Programmierersicht

22.03.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Rund 500 Fachleute aus Wissenschaft und Wirtschaft diskutierten über technologische Zukunftsthemen

24.03.2017 | Veranstaltungsnachrichten

Förderung des Instituts für Lasertechnik und Messtechnik in Ulm mit rund 1,63 Millionen Euro

24.03.2017 | Förderungen Preise

TU-Bauingenieure koordinieren EU-Projekt zu Recycling-Beton von über sieben Millionen Euro

24.03.2017 | Förderungen Preise