Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Perfekte Imperfektion: Artenübergreifender Vergleich biologischer Oberflächen entwickelt

03.05.2016

Es liegt auf der Hand: Mottenaugen und Schlangenhaut sind grundverschieden. Forscher der Christian-Albrechts-Universität zu Kiel (CAU) haben trotzdem genauer hingeschaut und die vermeintlichen „Äpfel und Birnen“ jetzt auf einen gemeinsamen Nenner gebracht. Mit einer neuentwickelten Methode eröffnen sie einen völlig neuen, vergleichenden Blick auf biologische Oberflächen und kommen so der Lösung näher, wie diese Oberflächen funktionieren. Ihre Ergebnisse haben Dr. Alexander Kovalev, Dr. Alexander Filippov und Professor Stanislav Gorb vom Zoologischen Institut der Kieler Universität in der aktuellen Ausgabe des Fachjournals „Applied Physics A“ veröffentlicht.

Die einen demonstrieren eine Reduktion der Lichtreflektion, die anderen sind besonders wasserabweisend oder halten vor allem Reibung stand. Oberflächen im Tierreich sind an ihre Umgebung angepasst und bieten dem Tier, welches sie umhüllen, einen größtmöglichen evolutionären Vorteil. Wie und warum genau diese unterschiedlichen Strukturen entstehen und wie sie im Detail aufgebaut sind, stellt die Wissenschaft aber auch heute noch vor viele Rätsel.


Aufnahmen der Schlangenhaut einer Morelia viridis im Rastertunnelmikroskop. Die markierten Bereiche zeigen typische asymmetrische Anordnungen von Erhebungen.

Copyright: AG Gorb


Mikroskopaufnahme vom Mottenauge am Beispiel der Manduca sexta. Die dunklen Bereiche sind jeweils hochsymmetrische Domänen.

Copyright: AG Gorb

Aktuelle Arbeiten blicken mittels modernster Forschungstechniken bis in die Zellstrukturen hinein. Normalerweise beschränkte man sich dabei bislang aber auf Vergleiche innerhalb einer Spezies und schaute sich nur kleine Bereiche der Oberflächen näher an, berichtet Gorb: „Wir haben uns deshalb gefragt, welche strukturellen Unterschiede den verschiedenen Arten im Vergleich zu Grunde liegen. Dafür haben wir den typischen Blickwinkel der Biologie verändert und uns größere Oberflächenabschnitte verschiedener Arten vorgenommen.“ Derartige arten- beziehungsweise materialübergreifende Studien sind in anderen technischen oder anorganischen Fachgebieten übliches Tagwerk. In der Biologie hingegen sei diese Methode vollkommen neu, so Gorb weiter.

Auf die Idee brachte sie die Dekoration auf dem eigenen Institutsflur. Dort sind rasterelektronenmikroskopische Aufnahmen von Mottenaugen und Schlangenhaut ausgestellt. Irgendwann fielen dem theoretischen Physiker Filippov Ähnlichkeiten zwischen den Aufnahmen auf, die die Oberflächen auf wenige Millionstel Millimeter aufgelöst zeigen. Zu sehen sind Erhebungen und Einsenkungen, die für das menschliche Auge einer gewissen Ordnung zu folgen scheinen. Mit Methoden, die normalerweise in der Kristallographie benutzt werden, erkannten die Wissenschaftler schließlich jene Muster, durch die sich beide Arten unterschieden. „Die Struktur von Mottenaugen ist perfekt geordnet. Außer hohe Abstandsregelmäßigkeit zwischen der Erhebungen existieren bevorzugte Richtungen der Strukturanordnung in den meisten kleinen Bereichen“, erklärt Biophysiker und Erstautor der Studie Kovalev. Die strenge Symmetrie der Augenstruktur war der Wissenschaft bereits bekannt. Dass sie sich aber bis auf Nanoebene durchsetzt und sich über die gesamte Oberfläche, in sogenannten Domänen, wiederholt, sei eine wichtige neue Erkenntnis.

Welcher Symmetrie folgt nun die Oberfläche der Schlangenhaut, die auf den ersten Blick ähnlich, vielleicht sogar noch perfekter geordnet erscheint? „Im Vergleich mit der Struktur des Mottenauges ist die Struktur der Schlangenhaut ungeordnet“, erklärt dazu Kovalev. Und weiter: „Konzentrieren wir uns auf eine Einsenkung in der Haut, analog zu einer Erhebung im Auge, sehen wir nur eine diffuse Wolke weiterer Einsenkungen in der näheren Umgebung. Weder die Existenz besonderer Richtungen noch der reguläre Anordnung lässt sich definieren. Diese ungeordnete Struktur setzt sich über die gesamte Oberfläche fort.“

Für sich genommen sind die Erkenntnisse über die geordnete Augenstruktur zum einen und über die ungeordnete Hautstruktur zum anderen nicht sehr aussagekräftig. Durch den gemeinsamen Nenner, also beide Strukturen mit gleichem Auflösungsgrad zu untersuchen, werde allerdings erstmals ein Vergleich grundverschiedener Strukturen möglich, erläutert Gorb: „Allerdings ist der ‚zufällige‘ Ordnungsgrad nicht zufällig, sondern durch Evolution entstanden. Das würde bedeuten, die perfekte Ordnung verleiht der Motte ihre hervorragende Sehkraft im Dunkeln, während die imperfekte Ordnung der Schlangenhaut für beste Reibungseigenschaften sorgt.“ Das klingt auch logisch, wenn man gemäß physikalischer Gesetze bedenkt, dass für gutes Sehen eine symmetrische Struktur notwendig ist, für gute Reibungseigenschaften der Kontakt zum Untergrund aber so gering wie möglich sein sollte.

Wären die Kieler Forscher der üblichen Herangehensweise gefolgt und hätten Schlangen mit Schlangen und Motten mit Motten verglichen, wäre der Ordnung der Elemente auf Nanoebene kaum Bedeutung zugesprochen worden. „Im Vergleich der Arten sehen wir nun, dass der Schlüssel zum Verständnis von Oberflächenfunktionen bereits auf der kleinsten Ebene liegen muss. Jede biologische Oberfläche ist an ihre Umwelt angepasst, und diese Anpassungen spiegeln in der Anordnung ihrer kleinsten Elemente in einem bestimmten perfekten oder eben imperfekten Grad wieder“, schließt Gorb.

Originalpublikation
A. Kovalev, A. Filippov, S.N. Gorb. „Correlation analysis of symmetry breaking in the surface nanostructure ordering: case study of the ventral scale of the snake Morelia viridis”; Applied Physics A 122:253
DOI: 10.1007/s00339-016-9795-2

Fotos stehen zum Download bereit:
http://www.uni-kiel.de/download/pm/2016/2016-137-1.jpg
Der Motte ins Auge geschaut. Kieler Wissenschaftler erforschen die Nanostruktur von Tierzellen.
Foto, Copyright: Eulitz/Gorb

http://www.uni-kiel.de/download/pm/2016/2016-137-2.jpg
Der Institutsflur weckte ihr Interesse an der Forschungsfrage: Stanislav Gorb (links) und Alexander Kovalev (rechts).
Foto, Copyright: Claudia Eulitz/CAU

http://www.uni-kiel.de/download/pm/2016/2016-137-3.jpg
Aufnahmen der Schlangenhaut einer Morelia viridis im Rastertunnelmikroskop. Die markierten Bereiche zeigen typische asymmetrische Anordnungen von Erhebungen.
Copyright: AG Gorb

http://www.uni-kiel.de/download/pm/2016/2016-137-4.jpg
Mikroskopaufnahme vom Mottenauge am Beispiel der Manduca sexta. Die dunklen Bereiche sind jeweils hochsymmetrische Domänen.
Copyright: AG Gorb

Kontakt
Prof. Dr. Stanislav N. Gorb
Zoological Institute of the University of Kiel
Tel. +49-431/880-4513
sgorb@zoologie.uni-kiel.de
http://www.uni-kiel.de/zoologie/gorb/topics.html

Christian-Albrechts-Universität zu Kiel
Presse, Kommunikation und Marketing, Dr. Boris Pawlowski, Text: Claudia Eulitz
Postanschrift: D-24098 Kiel, Telefon: (0431) 880-2104, Telefax: (0431) 880-1355
E-Mail: presse@uv.uni-kiel.de, Internet: www.uni-kiel.de Twitter: www.twitter.com/kieluni, Facebook: www.facebook.com/kieluni

Weitere Informationen:

http://www.uni-kiel.de/pressemeldungen/index.php?pmid=2016-137-motten-und-schlan...

Dr. Boris Pawlowski | Christian-Albrechts-Universität zu Kiel

Weitere Berichte zu: Biologie Motte Nanoebene Oberfläche Oberflächen Schlangenhaut

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Wie Reize auf dem Weg ins Bewusstsein versickern
22.09.2017 | Rheinische Friedrich-Wilhelms-Universität Bonn

nachricht Lebendiges Gewebe aus dem Drucker
22.09.2017 | Universitätsklinikum Freiburg

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: The pyrenoid is a carbon-fixing liquid droplet

Plants and algae use the enzyme Rubisco to fix carbon dioxide, removing it from the atmosphere and converting it into biomass. Algae have figured out a way to increase the efficiency of carbon fixation. They gather most of their Rubisco into a ball-shaped microcompartment called the pyrenoid, which they flood with a high local concentration of carbon dioxide. A team of scientists at Princeton University, the Carnegie Institution for Science, Stanford University and the Max Plank Institute of Biochemistry have unravelled the mysteries of how the pyrenoid is assembled. These insights can help to engineer crops that remove more carbon dioxide from the atmosphere while producing more food.

A warming planet

Im Focus: Hochpräzise Verschaltung in der Hirnrinde

Es ist noch immer weitgehend unbekannt, wie die komplexen neuronalen Netzwerke im Gehirn aufgebaut sind. Insbesondere in der Hirnrinde der Säugetiere, wo Sehen, Denken und Orientierung berechnet werden, sind die Regeln, nach denen die Nervenzellen miteinander verschaltet sind, nur unzureichend erforscht. Wissenschaftler um Moritz Helmstaedter vom Max-Planck-Institut für Hirnforschung in Frankfurt am Main und Helene Schmidt vom Bernstein-Zentrum der Humboldt-Universität in Berlin haben nun in dem Teil der Großhirnrinde, der für die räumliche Orientierung zuständig ist, ein überraschend präzises Verschaltungsmuster der Nervenzellen entdeckt.

Wie die Forscher in Nature berichten (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005), haben die...

Im Focus: Highly precise wiring in the Cerebral Cortex

Our brains house extremely complex neuronal circuits, whose detailed structures are still largely unknown. This is especially true for the so-called cerebral cortex of mammals, where among other things vision, thoughts or spatial orientation are being computed. Here the rules by which nerve cells are connected to each other are only partly understood. A team of scientists around Moritz Helmstaedter at the Frankfiurt Max Planck Institute for Brain Research and Helene Schmidt (Humboldt University in Berlin) have now discovered a surprisingly precise nerve cell connectivity pattern in the part of the cerebral cortex that is responsible for orienting the individual animal or human in space.

The researchers report online in Nature (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005) that synapses in...

Im Focus: Tiny lasers from a gallery of whispers

New technique promises tunable laser devices

Whispering gallery mode (WGM) resonators are used to make tiny micro-lasers, sensors, switches, routers and other devices. These tiny structures rely on a...

Im Focus: Wundermaterial Graphen: Gewölbt wie das Polster eines Chesterfield-Sofas

Graphen besitzt extreme Eigenschaften und ist vielseitig verwendbar. Mit einem Trick lassen sich sogar die Spins im Graphen kontrollieren. Dies gelang einem HZB-Team schon vor einiger Zeit: Die Physiker haben dafür eine Lage Graphen auf einem Nickelsubstrat aufgebracht und Goldatome dazwischen eingeschleust. Im Fachblatt 2D Materials zeigen sie nun, warum dies sich derartig stark auf die Spins auswirkt. Graphen kommt so auch als Material für künftige Informationstechnologien infrage, die auf der Verarbeitung von Spins als Informationseinheiten basieren.

Graphen ist wohl die exotischste Form von Kohlenstoff: Alle Atome sind untereinander nur in der Ebene verbunden und bilden ein Netz mit sechseckigen Maschen,...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

11. BusinessForum21-Kongress „Aktives Schadenmanagement"

22.09.2017 | Veranstaltungen

Internationale Konferenz zum Biomining ab Sonntag in Freiberg

22.09.2017 | Veranstaltungen

Die Erde und ihre Bestandteile im Fokus

21.09.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

11. BusinessForum21-Kongress „Aktives Schadenmanagement"

22.09.2017 | Veranstaltungsnachrichten

DFG bewilligt drei neue Forschergruppen und eine neue Klinische Forschergruppe

22.09.2017 | Förderungen Preise

Lebendiges Gewebe aus dem Drucker

22.09.2017 | Biowissenschaften Chemie