Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Peptide und die Innere Uhr

03.05.2011
Peptide sind kleine Eiweißmoleküle, die als Signalmoleküle an vielen Vorgängen im Organismus beteiligt sind. Den Stoffwechsel beeinflussen sie ebenso wie Lern- und Gedächtnisprozesse oder das Sozialverhalten. Christian Wegener (40), neuer Professor am Biozentrum der Uni Würzburg, erforscht Peptid-Systeme und ihre Steuerung durch die Innere Uhr.

Christian Wegener ist seit 1. April 2011 am Lehrstuhl für Neurobiologie und Genetik im Biozentrum tätig. Im Mittelpunkt seiner Forschung steht die Taufliege Drosophila. „Dieses Insekt hat sich als wichtiges Modell etabliert, um die generellen Mechanismen und Funktionen der Peptid-Systeme zu untersuchen“, sagt Wegener.

Warum Drosophila als Modell taugt

Zum Modellorganismus wurde die Taufliege Drosophila, weil viele ihrer Gehirn- und Nervenfunktionen denen des Menschen sehr ähnlich sind. Außerdem lasse sich Drosophila auf einzigartige Weise genetisch manipulieren – so können die Forscher zum Beispiel gezielt einzelne Peptide lahmlegen und dann untersuchen, welche Folgen das hat. Darüber hinaus könne die Taufliege wichtige Erkenntnisse über allgemeine Prinzipien der hormonellen Steuerung des Nervensystems liefern, und die Evolution der Peptid-Systeme bei Insekten und anderen Gliedertieren erhellen.

Die Arbeit mit Insekten hat für den Neurogenetiker einen großen Vorteil: Das Nervensystem von Fliege & Co. vollbringt mit vergleichsweise wenigen Nervenzellen eine erstaunliche Steuerungs- und Verarbeitungsleistung: „Während ein Mensch circa 100 Milliarden Nervenzellen besitzt, sind es bei der Taufliege nur rund 80.000. Bei ihr können wir Nervenzellen, die auf Peptide reagieren oder selbst Peptide herstellen, von Tier zu Tier individuell identifizieren.“

Welche Peptide stehen den Insekten in ihrem Signalstoff-Arsenal zur Verfügung? Wie sind die Peptid-Systeme zellulär aufgebaut? Wie werden Produktion und Freisetzung der Peptide reguliert? Solche Fragen stehen im Mittelpunkt der Forschung in der Gruppe von Professor Wegener.

„In den vergangenen Jahren haben wir sämtliche Peptidhormone chemisch charakterisiert, die vom Nervensystem oder dem Darm als Signalmoleküle von der Taufliege eingesetzt werden können“, sagt Wegener. Mittels Bildgebung an lebenden Zellen arbeitet seine Gruppe nun an der Identifizierung der Zielzellen, an denen die Peptide ihre Wirkung entfalten. „Momentan erforschen wir die Funktion einiger Darmpeptide bei der Regulation des Stoffwechsels und der Nahrungsaufnahme.“

Innere Uhr steuert Peptid-Systeme

Laut Christian Wegener zeichnet es sich immer mehr ab, dass die Freisetzung vieler Peptidhormone bei Säugetieren und auch beim Menschen durch Innere Uhren reguliert wird, dass sie also automatisch in regelmäßigen Zeitabständen abläuft. Die zugrunde liegenden zellulären Mechanismen seien aber erst ansatzweise verstanden.

Wie steuert die Innere Uhr die Aktivität von Peptid-Systemen im Verlauf eines Tages und im Lauf der individuellen Entwicklung des Organismus? „Das wollen wir in einem von der Deutschen Forschungsgemeinschft-geförderten Projekt in Würzburg am Beispiel des Schlupfverhaltens von Drosophila erforschen, also an dem Vorgang, der mit dem Schlüpfen des erwachsenen Insekts aus der Puppenhülle endet“, sagt der Professor.

Für diese Untersuchungen biete der Lehrstuhl für Neurobiologie und Genetik unter der Leitung von Professorin Charlotte Förster ein international hervorragendes Umfeld, so Wegener. Ergänzt werde es in einzigartiger Weise durch die Forschungsgruppen am Biozentrum, die sich mit dem Verhalten von Insekten und mit der Analysenmethode der Massenspektrometrie befassen. Damit können Peptide hoch sensitiv charakterisiert und nachgewiesen werden.

Werdegang von Christian Wegener

Christian Wegener, Jahrgang 1971, wurde in Villingen im Schwarzwald geboren. Er studierte Biologie an den Universitäten in Konstanz und Jena; seine Promotion am Institut für Allgemeine Zoologie und Tierphysiologie in Jena schloss er im Jahr 2000 ab. Als Postdoc war er dann drei Jahre in Stockholm, wo er über die Signalgebung der Inneren Uhr ans Gehirn forschte.

2003 kehrte er nach Deutschland zurück, an die Universität Marburg. Dort leitete er bis März 2011 seine eigene Nachwuchsgruppe, für die er mehrere Jahre eine finanzielle Förderung aus dem Emmy-Noether-Programm der Deutschen Forschungsgemeinschaft erhielt. 2006/07 absolvierte er an der Universität Leeds in England einen Aufenthalt als Research Fellow der EMBO. Zum 1. April 2011 wechselte Wegener nun auf die Professur für Neurogenetik an der Universität Würzburg.

Kontakt

Prof. Dr. Christian Wegener, Lehrstuhl für Neurobiologie und Genetik der Universität Würzburg, T (0931) 31-85380, christian.wegener@uni-wuerzburg.de

Robert Emmerich | idw
Weitere Informationen:
http://www.uni-wuerzburg.de

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Zirkuläre RNA wird in Proteine übersetzt
24.03.2017 | Max-Delbrück-Centrum für Molekulare Medizin in der Helmholtz-Gemeinschaft

nachricht Wegweisende Erkenntnisse für die Biomedizin: NAD⁺ hilft bei Reparatur geschädigter Erbinformationen
24.03.2017 | Universität Bayreuth

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Wegweisende Erkenntnisse für die Biomedizin: NAD⁺ hilft bei Reparatur geschädigter Erbinformationen

Eine internationale Forschergruppe mit dem Bayreuther Biochemiker Prof. Dr. Clemens Steegborn präsentiert in 'Science' neue, für die Biomedizin wegweisende Forschungsergebnisse zur Rolle des Moleküls NAD⁺ bei der Korrektur von Schäden am Erbgut.

Die Zellen von Menschen und Tieren können Schäden an der DNA, dem Träger der Erbinformation, bis zu einem gewissen Umfang selbst reparieren. Diese Fähigkeit...

Im Focus: Designer-Proteine falten DNA

Florian Praetorius und Prof. Hendrik Dietz von der Technischen Universität München (TUM) haben eine neue Methode entwickelt, mit deren Hilfe sie definierte Hybrid-Strukturen aus DNA und Proteinen aufbauen können. Die Methode eröffnet Möglichkeiten für die zellbiologische Grundlagenforschung und für die Anwendung in Medizin und Biotechnologie.

Desoxyribonukleinsäure – besser bekannt unter der englischen Abkürzung DNA – ist die Trägerin unserer Erbinformation. Für Prof. Hendrik Dietz und Florian...

Im Focus: Fliegende Intensivstationen: Ultraschallgeräte in Rettungshubschraubern können Leben retten

Etwa 21 Millionen Menschen treffen jährlich in deutschen Notaufnahmen ein. Im Kampf zwischen Leben und Tod zählt für diese Patienten jede Minute. Wenn sie schon kurz nach dem Unfall zielgerichtet behandelt werden können, verbessern sich ihre Überlebenschancen erheblich. Damit Notfallmediziner in solchen Fällen schnell die richtige Diagnose stellen können, kommen in den Rettungshubschraubern der DRF Luftrettung und zunehmend auch in Notarzteinsatzfahrzeugen mobile Ultraschallgeräte zum Einsatz. Experten der Deutschen Gesellschaft für Ultraschall in der Medizin e.V. (DEGUM) schulen die Notärzte und Rettungsassistenten.

Mit mobilen Ultraschallgeräten können Notärzte beispielsweise innere Blutungen direkt am Unfallort identifizieren und sie bei Bedarf auch für Untersuchungen im...

Im Focus: Gigantische Magnetfelder im Universum

Astronomen aus Bonn und Tautenburg in Thüringen beobachteten mit dem 100-m-Radioteleskop Effelsberg Galaxienhaufen, das sind Ansammlungen von Sternsystemen, heißem Gas und geladenen Teilchen. An den Rändern dieser Galaxienhaufen fanden sie außergewöhnlich geordnete Magnetfelder, die sich über viele Millionen Lichtjahre erstrecken. Sie stellen die größten bekannten Magnetfelder im Universum dar.

Die Ergebnisse werden am 22. März in der Fachzeitschrift „Astronomy & Astrophysics“ veröffentlicht.

Galaxienhaufen sind die größten gravitativ gebundenen Strukturen im Universum, mit einer Ausdehnung von etwa zehn Millionen Lichtjahren. Im Vergleich dazu ist...

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Rund 500 Fachleute aus Wissenschaft und Wirtschaft diskutierten über technologische Zukunftsthemen

24.03.2017 | Veranstaltungen

Lebenswichtige Lebensmittelchemie

23.03.2017 | Veranstaltungen

Die „Panama Papers“ aus Programmierersicht

22.03.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Rund 500 Fachleute aus Wissenschaft und Wirtschaft diskutierten über technologische Zukunftsthemen

24.03.2017 | Veranstaltungsnachrichten

Förderung des Instituts für Lasertechnik und Messtechnik in Ulm mit rund 1,63 Millionen Euro

24.03.2017 | Förderungen Preise

TU-Bauingenieure koordinieren EU-Projekt zu Recycling-Beton von über sieben Millionen Euro

24.03.2017 | Förderungen Preise