Passkontrolle in der Zelle identifiziert Viren-Erbgut

(v.l.n.r.) Prof. Gunther Hartmann, Ann Kristin Bruder, Dr. Martin Schlee Foto: Meike Böschemeyer/Uni Bonn

Laut der aktuellen Studie trägt unsere eigene RNA an ihrem Kopfende eine molekulare Markierung, die sie bei einer Art „Passkontrolle“ in der Zelle vorzeigt. Dieser Mechanismus schützt uns vor Viren, verhindert aber die Alarmierung des Immunsystems durch körpereigene RNA. Allerdings gibt es Viren, die die Kontrolle durch eine raffinierte Passfälschung unterlaufen.

RNA-Viren, die Krankheiten wie Grippe, Gelbfieber oder Ebola verursachen, sind keine selbständig lebensfähigen Organismen. Sie brauchen für ihre Vermehrung lebende Körperzellen – ähnlich wie ein Computervirus für seine Verbreitung die Hard- und Software des infizierten Computers benötigt.

Denn RNA-Viren transportieren lediglich virale Erbinformationen (RNA) – gewissermaßen ihre eigene Bauanleitung. Bei einer Infektion schleusen sie ihre RNA in die Körperzelle. Diese beginnt daraufhin, Viren-Bestandteile zu bauen. Erst mit Hilfe der infizierten Zelle kann sich das Virus also vermehren.

Um Viren an ihrer Vermehrung zu hindern, muss der Körper daher virales Erbgut erkennen. Diese Erkennung erfolgt in der infizierten Zelle im sogenannten Zytoplasma. Allerdings nutzen Zellen auch selbst RNA, etwa als Bauanleitung für körpereigene Proteine. Virale RNA ist der körpereigenen RNA sehr ähnlich. Wie schafft das Immunsystem es also, die wenigen Kopien viraler RNA im Meer körpereigener RNA zu identifizieren?

Molekulare Passkontrolle durch RIG-I

Die Erkennung viraler RNA im Zytoplasma erfolgt durch zwei sogenannte RNA-Rezeptoren: RIG-I und MDA5. Während die Funktionsweise von MDA5 noch unklar ist, ist man bei RIG-I einige Schritte weiter: Wie bei einer Passkontrolle am Flughafen das Gesicht kontrolliert wird, überprüft RIG-I das Kopfende von RNAs. Denn dort sitzt eine Art Ausweis, an dem RIG-I körpereigene RNA erkennen kann.

„Körpereigene RNA ist an ihrem Kopfende mit einer bestimmten chemischen Struktur markiert, der N1-2’O-Methyl-Gruppe“, sagt Professor Dr. Gunther Hartmann. „Bei dem Erbgut von Viren fehlt diese Markierung“, erklärt der Direktor des Instituts für Klinische Chemie und Klinische Pharmakologie und Sprecher des Exzellenzclusters ImmunoSensation weiter.

Die Bedeutung dieser Markierung war bisher rätselhaft. „Wir konnten nun zeigen, dass sie die korrekte Bindung von RNA an RIG-I verhindert“, erläutert Dr. Martin Schlee, Forschungsgruppenleiter am Institut für Klinische Chemie und Klinische Pharmakologie. „Körpereigene RNA kann RIG-I also nicht aktivieren – anders als Viren-RNA: Diese dockt an RIG-I an und löst so eine Immunreaktion aus.“ Bei dieser Immunantwort werden einerseits antivirale Mechanismen in der Zelle aktiviert. Zudem werden Nachbarzellen alarmiert und Immunzellen rekrutiert, die schließlich wie nach einer Impfung die Bildung eines Immungedächtnisses initiieren.

Doch wie verhindert die N1-2’O-Methyl-Gruppe die Bindung an RIG-I? RIG-I trägt eine Struktur, die beim Bindungsvorgang mit der Methylgruppe kollidiert. „Diese Struktur ist in allen Wirbeltieren und sogar der evolutionsbiologisch alten Seeanemone vorhanden“, sagt Schlee.

Vorsicht, Passfälscher

Manchen Viren gelingt es jedoch, diesen Immunmechanismus zu unterlaufen. So fügt etwa das Gelbfieber-Virus die N1-2’O-Methyl-Gruppe selbst in seine RNA ein und mogelt sich so durch die Passkontrolle. Die Forscher hoffen nun, diese Erkenntnis für die Entwicklung von neuen Medikamenten nutzen zu können, die diesen Tarnmechanismus angreifen.

Der Forschungserfolg ist auch das Ergebnis einer umfassenden Kooperation: Hartmann und Schlee arbeiteten unter anderem mit den Instituten für Molekulare Medizin und Virologie in Bonn zusammen. Die Beteiligten sind Mitglieder des DFG-geförderten Exzellenzclusters Immunosensation und arbeiten auch im Deutschen Zentrum für Infektionsforschung (DZIF) eng zusammen.

Publikation: A Conserved Histidine in the RNA Sensor RIG-I Controls Immune Tolerance to N1-2′O-Methylated Self RNA; Immunity, http://dx.doi.org/10.1016/j.immuni.2015.06.015

Kontakt:
Dr. rer. nat. Martin Schlee
Institut für Klinische Chemie und Klinische Pharmakologie
des Universitätsklinikums Bonn
Tel. 0228/28716080
E-Mail: Martin.Schlee@uni-bonn.de

Media Contact

Dr. Andreas Archut idw - Informationsdienst Wissenschaft

Weitere Informationen:

http://www.uni-bonn.de/

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie

Der innovations-report bietet im Bereich der "Life Sciences" Berichte und Artikel über Anwendungen und wissenschaftliche Erkenntnisse der modernen Biologie, der Chemie und der Humanmedizin.

Unter anderem finden Sie Wissenswertes aus den Teilbereichen: Bakteriologie, Biochemie, Bionik, Bioinformatik, Biophysik, Biotechnologie, Genetik, Geobotanik, Humanbiologie, Meeresbiologie, Mikrobiologie, Molekularbiologie, Zellbiologie, Zoologie, Bioanorganische Chemie, Mikrochemie und Umweltchemie.

Zurück zur Startseite

Kommentare (0)

Schreiben Sie einen Kommentar

Neueste Beiträge

Merkmale des Untergrunds unter dem Thwaites-Gletscher enthüllt

Ein Forschungsteam hat felsige Berge und glattes Terrain unter dem Thwaites-Gletscher in der Westantarktis entdeckt – dem breiteste Gletscher der Erde, der halb so groß wie Deutschland und über 1000…

Wasserabweisende Fasern ohne PFAS

Endlich umweltfreundlich… Regenjacken, Badehosen oder Polsterstoffe: Textilien mit wasserabweisenden Eigenschaften benötigen eine chemische Imprägnierung. Fluor-haltige PFAS-Chemikalien sind zwar wirkungsvoll, schaden aber der Gesundheit und reichern sich in der Umwelt an….

Das massereichste stellare schwarze Loch unserer Galaxie entdeckt

Astronominnen und Astronomen haben das massereichste stellare schwarze Loch identifiziert, das bisher in der Milchstraßengalaxie entdeckt wurde. Entdeckt wurde das schwarze Loch in den Daten der Gaia-Mission der Europäischen Weltraumorganisation,…

Partner & Förderer