Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Passkontrolle in der Zelle identifiziert Viren-Erbgut

15.07.2015

Die Erbanlagen vieler Viren bestehen aus Ribonukleinsäure, abgekürzt RNA. Auch unser Körper produziert RNA; diese ist der viralen RNA sehr ähnlich. Dennoch kann unser Immunsystem virales Erbgut von körpereigener RNA unterscheiden. Forscher des Universitätsklinikums Bonn haben nun herausgefunden, wie das funktioniert. Ihre Studie wird im renommierten Fachjournal „Immunity“ vorgestellt.

Laut der aktuellen Studie trägt unsere eigene RNA an ihrem Kopfende eine molekulare Markierung, die sie bei einer Art „Passkontrolle“ in der Zelle vorzeigt. Dieser Mechanismus schützt uns vor Viren, verhindert aber die Alarmierung des Immunsystems durch körpereigene RNA. Allerdings gibt es Viren, die die Kontrolle durch eine raffinierte Passfälschung unterlaufen.


(v.l.n.r.) Prof. Gunther Hartmann, Ann Kristin Bruder, Dr. Martin Schlee

Foto: Meike Böschemeyer/Uni Bonn

RNA-Viren, die Krankheiten wie Grippe, Gelbfieber oder Ebola verursachen, sind keine selbständig lebensfähigen Organismen. Sie brauchen für ihre Vermehrung lebende Körperzellen – ähnlich wie ein Computervirus für seine Verbreitung die Hard- und Software des infizierten Computers benötigt.

Denn RNA-Viren transportieren lediglich virale Erbinformationen (RNA) – gewissermaßen ihre eigene Bauanleitung. Bei einer Infektion schleusen sie ihre RNA in die Körperzelle. Diese beginnt daraufhin, Viren-Bestandteile zu bauen. Erst mit Hilfe der infizierten Zelle kann sich das Virus also vermehren.

Um Viren an ihrer Vermehrung zu hindern, muss der Körper daher virales Erbgut erkennen. Diese Erkennung erfolgt in der infizierten Zelle im sogenannten Zytoplasma. Allerdings nutzen Zellen auch selbst RNA, etwa als Bauanleitung für körpereigene Proteine. Virale RNA ist der körpereigenen RNA sehr ähnlich. Wie schafft das Immunsystem es also, die wenigen Kopien viraler RNA im Meer körpereigener RNA zu identifizieren?

Molekulare Passkontrolle durch RIG-I

Die Erkennung viraler RNA im Zytoplasma erfolgt durch zwei sogenannte RNA-Rezeptoren: RIG-I und MDA5. Während die Funktionsweise von MDA5 noch unklar ist, ist man bei RIG-I einige Schritte weiter: Wie bei einer Passkontrolle am Flughafen das Gesicht kontrolliert wird, überprüft RIG-I das Kopfende von RNAs. Denn dort sitzt eine Art Ausweis, an dem RIG-I körpereigene RNA erkennen kann.

„Körpereigene RNA ist an ihrem Kopfende mit einer bestimmten chemischen Struktur markiert, der N1-2’O-Methyl-Gruppe“, sagt Professor Dr. Gunther Hartmann. „Bei dem Erbgut von Viren fehlt diese Markierung“, erklärt der Direktor des Instituts für Klinische Chemie und Klinische Pharmakologie und Sprecher des Exzellenzclusters ImmunoSensation weiter.

Die Bedeutung dieser Markierung war bisher rätselhaft. „Wir konnten nun zeigen, dass sie die korrekte Bindung von RNA an RIG-I verhindert“, erläutert Dr. Martin Schlee, Forschungsgruppenleiter am Institut für Klinische Chemie und Klinische Pharmakologie. „Körpereigene RNA kann RIG-I also nicht aktivieren – anders als Viren-RNA: Diese dockt an RIG-I an und löst so eine Immunreaktion aus.“ Bei dieser Immunantwort werden einerseits antivirale Mechanismen in der Zelle aktiviert. Zudem werden Nachbarzellen alarmiert und Immunzellen rekrutiert, die schließlich wie nach einer Impfung die Bildung eines Immungedächtnisses initiieren.

Doch wie verhindert die N1-2’O-Methyl-Gruppe die Bindung an RIG-I? RIG-I trägt eine Struktur, die beim Bindungsvorgang mit der Methylgruppe kollidiert. „Diese Struktur ist in allen Wirbeltieren und sogar der evolutionsbiologisch alten Seeanemone vorhanden“, sagt Schlee.

Vorsicht, Passfälscher

Manchen Viren gelingt es jedoch, diesen Immunmechanismus zu unterlaufen. So fügt etwa das Gelbfieber-Virus die N1-2’O-Methyl-Gruppe selbst in seine RNA ein und mogelt sich so durch die Passkontrolle. Die Forscher hoffen nun, diese Erkenntnis für die Entwicklung von neuen Medikamenten nutzen zu können, die diesen Tarnmechanismus angreifen.

Der Forschungserfolg ist auch das Ergebnis einer umfassenden Kooperation: Hartmann und Schlee arbeiteten unter anderem mit den Instituten für Molekulare Medizin und Virologie in Bonn zusammen. Die Beteiligten sind Mitglieder des DFG-geförderten Exzellenzclusters Immunosensation und arbeiten auch im Deutschen Zentrum für Infektionsforschung (DZIF) eng zusammen.

Publikation: A Conserved Histidine in the RNA Sensor RIG-I Controls Immune Tolerance to N1-2′O-Methylated Self RNA; Immunity, http://dx.doi.org/10.1016/j.immuni.2015.06.015

Kontakt:
Dr. rer. nat. Martin Schlee
Institut für Klinische Chemie und Klinische Pharmakologie
des Universitätsklinikums Bonn
Tel. 0228/28716080
E-Mail: Martin.Schlee@uni-bonn.de

Dr. Andreas Archut | idw - Informationsdienst Wissenschaft
Weitere Informationen:
http://www.uni-bonn.de/

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Der Evolutionsvorteil der Strandschnecke
28.03.2017 | Gesellschaft Deutscher Chemiker e.V.

nachricht Mobile Goldfinger
28.03.2017 | Gesellschaft Deutscher Chemiker e.V.

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Entwicklung miniaturisierter Lichtmikroskope - „ChipScope“ will ins Innere lebender Zellen blicken

Das Institut für Halbleitertechnik und das Institut für Physikalische und Theoretische Chemie, beide Mitglieder des Laboratory for Emerging Nanometrology (LENA), der Technischen Universität Braunschweig, sind Partner des kürzlich gestarteten EU-Forschungsprojektes ChipScope. Ziel ist es, ein neues, extrem kleines Lichtmikroskop zu entwickeln. Damit soll das Innere lebender Zellen in Echtzeit beobachtet werden können. Sieben Institute in fünf europäischen Ländern beteiligen sich über die nächsten vier Jahre an diesem technologisch anspruchsvollen Projekt.

Die zukünftigen Einsatzmöglichkeiten des neu zu entwickelnden und nur wenige Millimeter großen Mikroskops sind äußerst vielfältig. Die Projektpartner haben...

Im Focus: A Challenging European Research Project to Develop New Tiny Microscopes

The Institute of Semiconductor Technology and the Institute of Physical and Theoretical Chemistry, both members of the Laboratory for Emerging Nanometrology (LENA), at Technische Universität Braunschweig are partners in a new European research project entitled ChipScope, which aims to develop a completely new and extremely small optical microscope capable of observing the interior of living cells in real time. A consortium of 7 partners from 5 countries will tackle this issue with very ambitious objectives during a four-year research program.

To demonstrate the usefulness of this new scientific tool, at the end of the project the developed chip-sized microscope will be used to observe in real-time...

Im Focus: Das anwachsende Ende der Ordnung

Physiker aus Konstanz weisen sogenannte Mermin-Wagner-Fluktuationen experimentell nach

Ein Kristall besteht aus perfekt angeordneten Teilchen, aus einer lückenlos symmetrischen Atomstruktur – dies besagt die klassische Definition aus der Physik....

Im Focus: Wegweisende Erkenntnisse für die Biomedizin: NAD⁺ hilft bei Reparatur geschädigter Erbinformationen

Eine internationale Forschergruppe mit dem Bayreuther Biochemiker Prof. Dr. Clemens Steegborn präsentiert in 'Science' neue, für die Biomedizin wegweisende Forschungsergebnisse zur Rolle des Moleküls NAD⁺ bei der Korrektur von Schäden am Erbgut.

Die Zellen von Menschen und Tieren können Schäden an der DNA, dem Träger der Erbinformation, bis zu einem gewissen Umfang selbst reparieren. Diese Fähigkeit...

Im Focus: Designer-Proteine falten DNA

Florian Praetorius und Prof. Hendrik Dietz von der Technischen Universität München (TUM) haben eine neue Methode entwickelt, mit deren Hilfe sie definierte Hybrid-Strukturen aus DNA und Proteinen aufbauen können. Die Methode eröffnet Möglichkeiten für die zellbiologische Grundlagenforschung und für die Anwendung in Medizin und Biotechnologie.

Desoxyribonukleinsäure – besser bekannt unter der englischen Abkürzung DNA – ist die Trägerin unserer Erbinformation. Für Prof. Hendrik Dietz und Florian...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Industriearbeitskreis »Prozesskontrolle in der Lasermaterialbearbeitung ICPC« lädt nach Aachen ein

28.03.2017 | Veranstaltungen

Neue Methoden für zuverlässige Mikroelektronik: Internationale Experten treffen sich in Halle

28.03.2017 | Veranstaltungen

Wie Menschen wachsen

27.03.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Von Agenten, Algorithmen und unbeliebten Wochentagen

28.03.2017 | Unternehmensmeldung

Hannover Messe: Elektrische Maschinen in neuen Dimensionen

28.03.2017 | HANNOVER MESSE

Dimethylfumarat – eine neue Behandlungsoption für Lymphome

28.03.2017 | Medizin Gesundheit