Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Passkontrolle in der Zelle identifiziert Viren-Erbgut

15.07.2015

Die Erbanlagen vieler Viren bestehen aus Ribonukleinsäure, abgekürzt RNA. Auch unser Körper produziert RNA; diese ist der viralen RNA sehr ähnlich. Dennoch kann unser Immunsystem virales Erbgut von körpereigener RNA unterscheiden. Forscher des Universitätsklinikums Bonn haben nun herausgefunden, wie das funktioniert. Ihre Studie wird im renommierten Fachjournal „Immunity“ vorgestellt.

Laut der aktuellen Studie trägt unsere eigene RNA an ihrem Kopfende eine molekulare Markierung, die sie bei einer Art „Passkontrolle“ in der Zelle vorzeigt. Dieser Mechanismus schützt uns vor Viren, verhindert aber die Alarmierung des Immunsystems durch körpereigene RNA. Allerdings gibt es Viren, die die Kontrolle durch eine raffinierte Passfälschung unterlaufen.


(v.l.n.r.) Prof. Gunther Hartmann, Ann Kristin Bruder, Dr. Martin Schlee

Foto: Meike Böschemeyer/Uni Bonn

RNA-Viren, die Krankheiten wie Grippe, Gelbfieber oder Ebola verursachen, sind keine selbständig lebensfähigen Organismen. Sie brauchen für ihre Vermehrung lebende Körperzellen – ähnlich wie ein Computervirus für seine Verbreitung die Hard- und Software des infizierten Computers benötigt.

Denn RNA-Viren transportieren lediglich virale Erbinformationen (RNA) – gewissermaßen ihre eigene Bauanleitung. Bei einer Infektion schleusen sie ihre RNA in die Körperzelle. Diese beginnt daraufhin, Viren-Bestandteile zu bauen. Erst mit Hilfe der infizierten Zelle kann sich das Virus also vermehren.

Um Viren an ihrer Vermehrung zu hindern, muss der Körper daher virales Erbgut erkennen. Diese Erkennung erfolgt in der infizierten Zelle im sogenannten Zytoplasma. Allerdings nutzen Zellen auch selbst RNA, etwa als Bauanleitung für körpereigene Proteine. Virale RNA ist der körpereigenen RNA sehr ähnlich. Wie schafft das Immunsystem es also, die wenigen Kopien viraler RNA im Meer körpereigener RNA zu identifizieren?

Molekulare Passkontrolle durch RIG-I

Die Erkennung viraler RNA im Zytoplasma erfolgt durch zwei sogenannte RNA-Rezeptoren: RIG-I und MDA5. Während die Funktionsweise von MDA5 noch unklar ist, ist man bei RIG-I einige Schritte weiter: Wie bei einer Passkontrolle am Flughafen das Gesicht kontrolliert wird, überprüft RIG-I das Kopfende von RNAs. Denn dort sitzt eine Art Ausweis, an dem RIG-I körpereigene RNA erkennen kann.

„Körpereigene RNA ist an ihrem Kopfende mit einer bestimmten chemischen Struktur markiert, der N1-2’O-Methyl-Gruppe“, sagt Professor Dr. Gunther Hartmann. „Bei dem Erbgut von Viren fehlt diese Markierung“, erklärt der Direktor des Instituts für Klinische Chemie und Klinische Pharmakologie und Sprecher des Exzellenzclusters ImmunoSensation weiter.

Die Bedeutung dieser Markierung war bisher rätselhaft. „Wir konnten nun zeigen, dass sie die korrekte Bindung von RNA an RIG-I verhindert“, erläutert Dr. Martin Schlee, Forschungsgruppenleiter am Institut für Klinische Chemie und Klinische Pharmakologie. „Körpereigene RNA kann RIG-I also nicht aktivieren – anders als Viren-RNA: Diese dockt an RIG-I an und löst so eine Immunreaktion aus.“ Bei dieser Immunantwort werden einerseits antivirale Mechanismen in der Zelle aktiviert. Zudem werden Nachbarzellen alarmiert und Immunzellen rekrutiert, die schließlich wie nach einer Impfung die Bildung eines Immungedächtnisses initiieren.

Doch wie verhindert die N1-2’O-Methyl-Gruppe die Bindung an RIG-I? RIG-I trägt eine Struktur, die beim Bindungsvorgang mit der Methylgruppe kollidiert. „Diese Struktur ist in allen Wirbeltieren und sogar der evolutionsbiologisch alten Seeanemone vorhanden“, sagt Schlee.

Vorsicht, Passfälscher

Manchen Viren gelingt es jedoch, diesen Immunmechanismus zu unterlaufen. So fügt etwa das Gelbfieber-Virus die N1-2’O-Methyl-Gruppe selbst in seine RNA ein und mogelt sich so durch die Passkontrolle. Die Forscher hoffen nun, diese Erkenntnis für die Entwicklung von neuen Medikamenten nutzen zu können, die diesen Tarnmechanismus angreifen.

Der Forschungserfolg ist auch das Ergebnis einer umfassenden Kooperation: Hartmann und Schlee arbeiteten unter anderem mit den Instituten für Molekulare Medizin und Virologie in Bonn zusammen. Die Beteiligten sind Mitglieder des DFG-geförderten Exzellenzclusters Immunosensation und arbeiten auch im Deutschen Zentrum für Infektionsforschung (DZIF) eng zusammen.

Publikation: A Conserved Histidine in the RNA Sensor RIG-I Controls Immune Tolerance to N1-2′O-Methylated Self RNA; Immunity, http://dx.doi.org/10.1016/j.immuni.2015.06.015

Kontakt:
Dr. rer. nat. Martin Schlee
Institut für Klinische Chemie und Klinische Pharmakologie
des Universitätsklinikums Bonn
Tel. 0228/28716080
E-Mail: Martin.Schlee@uni-bonn.de

Dr. Andreas Archut | idw - Informationsdienst Wissenschaft
Weitere Informationen:
http://www.uni-bonn.de/

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Medikamente aus der CLOUD: Neuer Standard für die Suche nach Wirkstoffkombinationen
23.05.2017 | CeMM Forschungszentrum für Molekulare Medizin der Österreichischen Akademie der Wissenschaften

nachricht Mikro-Lieferservice für Dünger
23.05.2017 | Gesellschaft Deutscher Chemiker e.V.

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Tumult im trägen Elektronen-Dasein

Ein internationales Team von Physikern hat erstmals das Streuverhalten von Elektronen in einem nichtleitenden Material direkt beobachtet. Ihre Erkenntnisse könnten der Strahlungsmedizin zu Gute kommen.

Elektronen in nichtleitenden Materialien könnte man Trägheit nachsagen. In der Regel bleiben sie an ihren Plätzen, tief im Inneren eines solchen Atomverbunds....

Im Focus: Turmoil in sluggish electrons’ existence

An international team of physicists has monitored the scattering behaviour of electrons in a non-conducting material in real-time. Their insights could be beneficial for radiotherapy.

We can refer to electrons in non-conducting materials as ‘sluggish’. Typically, they remain fixed in a location, deep inside an atomic composite. It is hence...

Im Focus: Hauchdünne magnetische Materialien für zukünftige Quantentechnologien entwickelt

Zweidimensionale magnetische Strukturen gelten als vielversprechendes Material für neuartige Datenspeicher, da sich die magnetischen Eigenschaften einzelner Molekülen untersuchen und verändern lassen. Forscher haben nun erstmals einen hauchdünnen Ferrimagneten hergestellt, bei dem sich Moleküle mit verschiedenen magnetischen Zentren auf einer Goldfläche selbst zu einem Schachbrettmuster anordnen. Dies berichten Wissenschaftler des Swiss Nanoscience Institutes der Universität Basel und des Paul Scherrer Institutes in der Wissenschaftszeitschrift «Nature Communications».

Ferrimagneten besitzen zwei magnetische Zentren, deren Magnetismus verschieden stark ist und in entgegengesetzte Richtungen zeigt. Zweidimensionale, quasi...

Im Focus: Neuer Ionisationsweg in molekularem Wasserstoff identifiziert

„Wackelndes“ Molekül schüttelt Elektron ab

Wie reagiert molekularer Wasserstoff auf Beschuss mit intensiven ultrakurzen Laserpulsen? Forscher am Heidelberger MPI für Kernphysik haben neben bekannten...

Im Focus: Wafer-thin Magnetic Materials Developed for Future Quantum Technologies

Two-dimensional magnetic structures are regarded as a promising material for new types of data storage, since the magnetic properties of individual molecular building blocks can be investigated and modified. For the first time, researchers have now produced a wafer-thin ferrimagnet, in which molecules with different magnetic centers arrange themselves on a gold surface to form a checkerboard pattern. Scientists at the Swiss Nanoscience Institute at the University of Basel and the Paul Scherrer Institute published their findings in the journal Nature Communications.

Ferrimagnets are composed of two centers which are magnetized at different strengths and point in opposing directions. Two-dimensional, quasi-flat ferrimagnets...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Diabetes Kongress 2017:„Closed Loop“-Systeme als künstliche Bauchspeicheldrüse ab 2018 Realität

23.05.2017 | Veranstaltungen

Aachener Werkzeugmaschinen-Kolloquium 2017: Internet of Production für agile Unternehmen

23.05.2017 | Veranstaltungen

14. Dortmunder MST-Konferenz zeigt individualisierte Gesundheitslösungen mit Mikro- und Nanotechnik

22.05.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Medikamente aus der CLOUD: Neuer Standard für die Suche nach Wirkstoffkombinationen

23.05.2017 | Biowissenschaften Chemie

Diabetes Kongress 2017:„Closed Loop“-Systeme als künstliche Bauchspeicheldrüse ab 2018 Realität

23.05.2017 | Veranstaltungsnachrichten

CAST-Projekt setzt Dunkler Materie neue Grenzen

23.05.2017 | Physik Astronomie