Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Partikel stellen sich quer: Überraschende Orientierung in Kapillaren

09.04.2013
Wenn kleine Partikel durch dünne Kapillaren hindurchströmen, zeigen sie ein äußerst ungewöhnliches Orientierungsverhalten.

Dies hat jetzt eine Forschungsgruppe um Prof. Dr. Stephan Förster und Prof. Dr. Walter Zimmermann, Universität Bayreuth, entdeckt. Im Wissenschaftsmagazin PNAS berichten die beteiligten Wissenschaftler der Universität Bayreuth, der Radboud University Nijmegen, des Forschungszentrums DESY in Hamburg und des Max-Planck-Instituts für Dynamik und Selbstorganisation in Göttingen über ihre neuen Erkenntnisse. Für Spinnprozesse, die der Herstellung künstlicher Fasern dienen, oder für das Verständnis von Gefäßverengungen ist die Entdeckung von zentraler Bedeutung.


Mikroskopische Abbildung einer Kapillare mit Verengung und einem folgenden, sich erweiternden Abschnitt. In den blauen Bereichen sind die Partikel parallel zur Strömungsrichtung orientiert, in den orange Bereichen senkrecht zur Strömungsorientierung.


Grafik: Lehrstuhl für Physikalische Chemie I, Universität Bayreuth; mit Quellenangabe zur Veröffentlichung frei.


Streubilder, die bei Mikroröntgenexperimenten entstanden sind: A) parallele Orientierung zur Fließrichtung vor der Verengung in der Kapillare, B) senkrechte Orientierung zur Fließrichtung nach der Verengung in der Kapillare.


Bilder: Lehrstuhl für Physikalische Chemie I, Universität Bayreuth; mit Quellenangabe zur Veröffentlichung frei.

Röntgenexperimente machen das Strömungsverhalten sichtbar

Stäbchen- oder plättchenförmige Partikel, die durch dünne Kapillaren hindurchströmen, orientieren sich normalerweise parallel zur Strömungsrichtung. Falls eine Kapillare eine Verengung aufweist, ändert sich diese Orientierung nicht, bis die Partikel die engste Stelle erreicht haben. Doch sobald sich die Kapillare wieder erweitert, orientieren sich die Partikel senkrecht zur Strömungsrichtung und stellen sich quer. Die Wissenschaftler in Bayreuth, Hamburg, Nijmegen und Göttingen haben dieses überraschende Phänomen nicht nur entdeckt, sondern auch eine Erklärung dafür gefunden. Wie sie aufgrund theoretischer Berechnungen zeigen konnten, treten in dem sich erweiternden Kapillarabschnitt starke Dehnungskräfte senkrecht zur Strömungsrichtung auf. Diese Dehnungskräfte bewirken, dass sich die Partikel umorientieren.
Die theoretischen Berechnungen wurden bestätigt durch Mikroröntgenexperimente am Deutschen Elektronensynchrotron (DESY). Hier wurden an der Strahlungsquelle PETRA III mit modernen röntgenoptischen Verfahren hochintensive Röntgenstrahlen mit Durchmessern von nur wenigen Mikrometern erzeugt. Auf diese Weise war es erstmals möglich, das Strömungsverhalten in besonders dünnen Kapillaren zu beobachten. Die Wissenschaftler konnten präzise ermitteln, wie sich die Partikel ausrichten, wenn sie eine verengte Kapillare durchströmen. Die senkrechte Orientierung, die sie nach dem Passieren der engsten Stelle annehmen, ist stabil; sie ändert sich im weiteren Verlauf in der Kapillare nicht mehr.

Neue Erkenntnisse zur Herstellung von Hochleistungsfasern und zur Entstehung von Gefäßerkrankungen

Die Umorientierung der Partikel beim Durchströmen enger Kapillarstellen ist von zentraler Bedeutung für das Verständnis vieler biologischer und technischer Strömungsprozesse. Ein Beispiel ist der Vorgang des Spinnens. Dabei werden Lösungen von Makromolekülen und Partikeln durch feine Spinndüsen gepresst. Für die Herstellung von Fasern, die sich durch hohe Reißfestigkeit und andere gute mechanische Eigenschaften auszeichnen, ist es unbedingt erforderlich, dass die Makromoleküle und Partikel parallel zur Fließrichtung orientiert sind. Doch wie sich jetzt herausgestellt hat, sind sie beim Verlassen der Düse senkrecht zur Fließrichtung ausgerichtet. Dies erklärt die bereits seit langem bekannte Tatsache, dass gesponnene Fasern verstreckt werden müssen. Die Verstreckung bewirkt, dass die Makromoleküle und Partikel – als Bausteine der Fasern – erneut die gewünschte parallele Ausrichtung annehmen. Die in den PNAS veröffentlichten neuen Erkenntnisse machen es möglich, die Strömungsorientierung dieser Bausteine vorherzusagen und durch ein entsprechendes Design von Kapillaren und Düsen genau zu kontrollieren.

Ein weiteres Anwendungsgebiet ist die Medizin, insofern Zellen und Proteine durch feinste Blutgefäße fließen. Wenn sie sich aufgrund von Gefäßverengungen umorientieren, kann dies eine Agglomeration bewirken. Die Folge ist eine Thrombose oder ein Gefäßverschluss. Möglicherweise hat die internationale Forschergruppe jetzt einen wichtigen Teilprozess entdeckt, der entscheidend zur Entstehung dieser Gefäßerkrankungen beiträgt.
Internationale Forschungskooperation

Zu den Autoren des in den PNAS veröffentlichten Beitrags zählen Prof. Dr. Stephan Förster und seine Gruppe am Lehrstuhl Physikalische Chemie I sowie Prof. Dr. Walter Zimmermann am Lehrstuhl Theoretische Physik I an der Universität Bayreuth; des weiteren Dr. Julian Thiele (Radboud University Nijmegen), Dr. Jan Perlich, Dr. Adeline Buffet und Dr. Stephan V. Roth (DESY Hamburg) sowie Dagmar Steinhauser (MPI für Dynamik und Selbstsorganisation, Göttingen, und Deutsches Institut für Kautschuktechnologie e.V., Hannover). Das Projekt wurde im Rahmen eines der bedeutendsten Förderprogramme der Europäischen Union realisiert: 2012 ist Prof. Dr. Stephan Förster ein ERC Advanced Grant zuerkannt worden. Zudem hat auch das Bundesministerium für Bildung und Forschung (BMBF) die Forschungsarbeiten gefördert.
Veröffentlichung:

Martin Trebbin, Dagmar Steinhauser, Jan Perlich, Adeline Buffet, Stephan V. Roth, Walter Zimmermann, Julian Thiele, Stephan Förster,
Anisotropic particles align perpendicular to the flow-direction in narrow microchannels,
in: PNAS (Proceedings of the National Academy of Sciences of the United States of America) Early Online Edition, April 8, 2013;
DOI: 10.1073/pnas.1219340110

Kontakt für weitere Informationen:

Prof. Dr. Stephan Förster
Lehrstuhl Physikalische Chemie I
Universität Bayreuth
D-95440 Bayreuth
Tel: +49 (0)921 / 55-2760
E-Mail (Sekr.): elisabeth.duengfelder@uni-bayreuth.de

Christian Wißler | Universität Bayreuth
Weitere Informationen:
http://www.uni-bayreuth.de

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Wie Reize auf dem Weg ins Bewusstsein versickern
22.09.2017 | Rheinische Friedrich-Wilhelms-Universität Bonn

nachricht Lebendiges Gewebe aus dem Drucker
22.09.2017 | Universitätsklinikum Freiburg

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: The pyrenoid is a carbon-fixing liquid droplet

Plants and algae use the enzyme Rubisco to fix carbon dioxide, removing it from the atmosphere and converting it into biomass. Algae have figured out a way to increase the efficiency of carbon fixation. They gather most of their Rubisco into a ball-shaped microcompartment called the pyrenoid, which they flood with a high local concentration of carbon dioxide. A team of scientists at Princeton University, the Carnegie Institution for Science, Stanford University and the Max Plank Institute of Biochemistry have unravelled the mysteries of how the pyrenoid is assembled. These insights can help to engineer crops that remove more carbon dioxide from the atmosphere while producing more food.

A warming planet

Im Focus: Hochpräzise Verschaltung in der Hirnrinde

Es ist noch immer weitgehend unbekannt, wie die komplexen neuronalen Netzwerke im Gehirn aufgebaut sind. Insbesondere in der Hirnrinde der Säugetiere, wo Sehen, Denken und Orientierung berechnet werden, sind die Regeln, nach denen die Nervenzellen miteinander verschaltet sind, nur unzureichend erforscht. Wissenschaftler um Moritz Helmstaedter vom Max-Planck-Institut für Hirnforschung in Frankfurt am Main und Helene Schmidt vom Bernstein-Zentrum der Humboldt-Universität in Berlin haben nun in dem Teil der Großhirnrinde, der für die räumliche Orientierung zuständig ist, ein überraschend präzises Verschaltungsmuster der Nervenzellen entdeckt.

Wie die Forscher in Nature berichten (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005), haben die...

Im Focus: Highly precise wiring in the Cerebral Cortex

Our brains house extremely complex neuronal circuits, whose detailed structures are still largely unknown. This is especially true for the so-called cerebral cortex of mammals, where among other things vision, thoughts or spatial orientation are being computed. Here the rules by which nerve cells are connected to each other are only partly understood. A team of scientists around Moritz Helmstaedter at the Frankfiurt Max Planck Institute for Brain Research and Helene Schmidt (Humboldt University in Berlin) have now discovered a surprisingly precise nerve cell connectivity pattern in the part of the cerebral cortex that is responsible for orienting the individual animal or human in space.

The researchers report online in Nature (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005) that synapses in...

Im Focus: Tiny lasers from a gallery of whispers

New technique promises tunable laser devices

Whispering gallery mode (WGM) resonators are used to make tiny micro-lasers, sensors, switches, routers and other devices. These tiny structures rely on a...

Im Focus: Wundermaterial Graphen: Gewölbt wie das Polster eines Chesterfield-Sofas

Graphen besitzt extreme Eigenschaften und ist vielseitig verwendbar. Mit einem Trick lassen sich sogar die Spins im Graphen kontrollieren. Dies gelang einem HZB-Team schon vor einiger Zeit: Die Physiker haben dafür eine Lage Graphen auf einem Nickelsubstrat aufgebracht und Goldatome dazwischen eingeschleust. Im Fachblatt 2D Materials zeigen sie nun, warum dies sich derartig stark auf die Spins auswirkt. Graphen kommt so auch als Material für künftige Informationstechnologien infrage, die auf der Verarbeitung von Spins als Informationseinheiten basieren.

Graphen ist wohl die exotischste Form von Kohlenstoff: Alle Atome sind untereinander nur in der Ebene verbunden und bilden ein Netz mit sechseckigen Maschen,...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

11. BusinessForum21-Kongress „Aktives Schadenmanagement"

22.09.2017 | Veranstaltungen

Internationale Konferenz zum Biomining ab Sonntag in Freiberg

22.09.2017 | Veranstaltungen

Die Erde und ihre Bestandteile im Fokus

21.09.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

11. BusinessForum21-Kongress „Aktives Schadenmanagement"

22.09.2017 | Veranstaltungsnachrichten

DFG bewilligt drei neue Forschergruppen und eine neue Klinische Forschergruppe

22.09.2017 | Förderungen Preise

Lebendiges Gewebe aus dem Drucker

22.09.2017 | Biowissenschaften Chemie