Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Parallele Bio-Welt mit genetischer Fire-wall

18.04.2011
Neue Wege zur Ganzzellkatalyse durch künstliche Bakterien

Im Berliner Exzellenzcluster UniCat (Unifying Concepts in Catalysis) wird rund um den Biochemiker Nediljko Budisa in Zusammenarbeit mit dem französischen Biologen Philippe Marlière ein neues Konzept entwickelt, um Industriebakterien durch eine neue, bisher nicht in Lebewesen vorkommende Chemie mit neuen katalytischen Funktionen auszustatten. Sie nennen dieses neue biochemische Verfahren „Codonemanzipation“.

Dabei wird eine genetische Firewall errichtet, die die Bakterien von einer speziellen Nährlösung abhängig macht. Damit sind sie in der natürlichen Umwelt nicht lebensfähig, und ein Gentransfer in die Umgebung ist unmöglich.

Budisa und Marliére möchten die „alte“ natürliche Chemie durch eine neue ersetzen. Das soll durch die gerichtete Evolution natürlicher, schnell wachsender Bakterien im Reagenzglas erreicht werden. „Diese Zellen befinden sich gewissermaßen in einer parallelen Welt“, sagt Budisa. „Sie können ihre genetische Information nicht mehr mit anderen Lebewesen austauschen, sie besitzen eine genetische Firewall.“

Zwar wachsen die Bakterien am Anfang in der synthetischen Nährlösung mit der nicht-natürlichen Aminosäure nur sehr schlecht. Doch durch Zucht die über viele Generationen werden sie am Ende „codonemanzipiert“. „Codonemanzipation“ ist die Möglichkeit, lebende Systeme mit einer alternativen Chemie zu versehen. Einerseits wird der Weg zur künstlichen biologischen Vielfalt von der Fachwelt mit Skepsis betrachtet. Andererseits ist im Erfolgsfall ungeheurer Nutzen für industrielle Anwendungen zu erwarten. Zum Beispiel sind neue umweltfreundliche Biokatalysatoren zur Herstellung von Treibstoff, neuer medizinischer Wirkstoffe oder umweltfreundlicher Biomaterialien denkbar. Gleichzeitig trägt dieses Projekt grundlegend dazu bei, Probleme und Bedenken bezüglich der biologischen Sicherheit synthetischer Organismen wissenschaftlich aufzugreifen und in der Öffentlichkeit zu thematisieren.

Diese chemisch modifizierten Bakterien werden für eine theoretisch unbegrenzte Zeit lebensfähig sein und zwar in genetischer Isolation von natürlichen Spezies. Sobald die nicht-natürliche Aminosäure nicht mehr in der Nährlösung angeboten wird, sterben sie ab. Die „Codonemanzipation“ errichtet also einen „genetischen Schutzwall" gegen einen möglichen genetischen Austausch zwischen artifiziellen und natürlichen Zellen.

Philippe Marliére betont: „Wir werden den gesamten genomischen Text der Mikroben im Reagenzglas durch gehäufte Mutationen in rasch wachsenden Zellen unter permanentem Selektionsdruck neu schreiben. Dafür haben wir in den vergangenen zehn Jahren einen Automaten, einen sogenannten Genematen, entwickelt.“

Diese Entwicklungen stehen in der vordersten Front der Synthetischen Biologie. Die Arbeiten der berühmten Amerikaner Craig Venter und George Church sind dagegen mehr oder weniger im Rahmen der klassischen Gentechnik zu betrachten; denn sie basieren auf Kopieren und Resynthetisieren von Strukturen, die in der Natur vorhandenen sind, mit Hilfe von synthetischen DNA-Oligomeren.

Matthias Drieß, der Sprecher des Exzellenzclusters UniCat, ist begeistert von den Aussichten, die die vereinten Kräfte der Wissenschaftler Budisa und Marlière eröffnen: „Dies wird den Bio-Part unseres Clusters enorm stärken. Philippe Marlière ist ein Innovator par excellence, und Nediljko Budisa ein origineller Denker mit hohem intellektuellem Profil, ein harter Arbeiter, der seit Jahrzehnten seine ursprünglichen Ideen und hoch gesteckten Ziele verfolgt, ohne sich vom wissenschaftlichen Mainstream und den Moden in Deutschlands Forschungslandschaft ablenken zu lassen. Er schwimmt erfolgreich gegen alle Ströme. Wir erwarten nicht nur die Entwicklung eines einzigartigen Ganzzellkatalysators, sondern auch die Entwicklung künstlicher Lebensformen mit Funktionen, die bisher nicht von der natürlichen Evolution erfunden wurden.“

Der genetische Code und das Konzept der „Codonemanzipation“

Der genetische Code wurde 1966 aufgeklärt, er ist für alle Lebewesen gleich. Das bedeutet, dass in jedem Organismus eine bestimmte Reihenfolge von Nukleinsäuren in der DNA das gleiche Eiweißmolekül liefert. Der genetische Code bestimmt, wie die Reihenfolge der Basen aus Adenin (A), Cytosin (C), Guanin (G) und Thymin (T) in Eiweiße übersetzt werden. Je drei Basen stehen für eine Aminosäure. Solch ein Triplet nennt man Codon. Es gibt nur 64 Codons, die 20 Aminosäuren bilden. Deshalb sind die meisten Aminosäuren durch mehrere Codons codiert.

Zum Beispiel kann die Aminosäure Arginin durch die sechs Codons CGG, CGA, CGC, CGU, AGG und AGA dargestellt werden. AGG und AGA werden in Bakterien wie Escherichia coli sehr selten benutzt. Deshalb könnten theoretisch zum Beispiel alle AGGs im Erbgut eines Lebewesens einer neuen nichtnatürlichen Aminosäure zugeordnet werden. Die Zelle ist dann „codonemanzipiert“, das heißt die alte natürliche Chemie wurde durch eine neue ersetzt.

Exzellenzcluster Unifying Concepts in Catalysis (UniCat)

„Unifying Concepts in Catalysis“ (UniCat) ist der einzige Exzellenzcluster, der das volkswirtschaftlich wichtige Gebiet der Katalyse erforscht. In diesem interdisziplinären Forschungsverbund arbeiten mehr als 250 Chemiker, Physiker, Biologen und Verfahrenstechniker aus vier Universitäten und zwei Max-Planck-Instituten aus Berlin und Brandenburg zusammen. Sprecherhochschule ist die Technische Universität Berlin. UniCat wird von der Deutschen Forschungsgemeinschaft im Rahmen der Exzellenzinitiative mit rund 5,6 Millionen Euro jährlich gefördert.

Weitere Informationen erteilen Ihnen gern:
Prof. Dr. Nediljko Budisa, Technische Universität Berlin, Institut für Chemie, 030/ 314-23 661, E-Mail: budisa@biocat.tu-berlin.de, Internet: www.biocat.tu-berlin.de

Dr. Martin Penno, Exzellenzcluster UniCat, Öffentlichkeitsarbeit, Technische Universität Berlin, Tel.: 030/314-28592, E-Mail: martin.penno@tu-berlin.de

Referenzen:

Hoesl, M. and Budisa, N. (2011). Paralleler In-vivo-Einbau von mehreren nichtkanonischen Aminosäuren in Proteine. Angewandte Chemie, dt. Ausgabe, Band 123, Seite 2948–2955, vom 21. März, 2011

http://onlinelibrary.wiley.com/doi/10.1002/ange.201005680/abstract

Schmidt, M. (2010), Xenobiology: A new form of life as the ultimate biosafety tool. BioEssays, 32, 322–331

http://onlinelibrary.wiley.com/doi/10.1002/bies.200900147/abstract

Marliere P. (2009). The farther, the safer: a manifesto for securely navigating synthetic species away from the old living world. Syst. Synth. Biol. 3, 77-84.

http://www.springerlink.com/content/j504q5032553n326/

Budisa, N. (2004). Prolegomena to future experimental efforts on genetic code engineering by expanding its amino acid repertoire. Angew. Chem. Int. Ed. Engl. 43, 6426-6463.

http://onlinelibrary.wiley.com/doi/10.1002/anie.200300646/abstract

Stefanie Terp | idw
Weitere Informationen:
http://www.tu-berlin.de/

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Wirt oder Gast? Proteomik gibt neue Aufschlüsse über Reaktion von Rifforganismen auf Umweltstress
23.02.2018 | Leibniz-Zentrum für Marine Tropenforschung (ZMT)

nachricht Wie Zellen unterschiedlich auf Stress reagieren
23.02.2018 | Max-Planck-Institut für molekulare Genetik

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Vorstoß ins Innere der Atome

Mit Hilfe einer neuen Lasertechnologie haben es Physiker vom Labor für Attosekundenphysik der LMU und des MPQ geschafft, Attosekunden-Lichtblitze mit hoher Intensität und Photonenenergie zu produzieren. Damit konnten sie erstmals die Interaktion mehrere Photonen in einem Attosekundenpuls mit Elektronen aus einer inneren atomaren Schale beobachten konnten.

Wer die ultraschnelle Bewegung von Elektronen in inneren atomaren Schalen beobachten möchte, der benötigt ultrakurze und intensive Lichtblitze bei genügend...

Im Focus: Attoseconds break into atomic interior

A newly developed laser technology has enabled physicists in the Laboratory for Attosecond Physics (jointly run by LMU Munich and the Max Planck Institute of Quantum Optics) to generate attosecond bursts of high-energy photons of unprecedented intensity. This has made it possible to observe the interaction of multiple photons in a single such pulse with electrons in the inner orbital shell of an atom.

In order to observe the ultrafast electron motion in the inner shells of atoms with short light pulses, the pulses must not only be ultrashort, but very...

Im Focus: Good vibrations feel the force

Eine Gruppe von Forschern um Andrea Cavalleri am Max-Planck-Institut für Struktur und Dynamik der Materie (MPSD) in Hamburg hat eine Methode demonstriert, die es erlaubt die interatomaren Kräfte eines Festkörpers detailliert auszumessen. Ihr Artikel Probing the Interatomic Potential of Solids by Strong-Field Nonlinear Phononics, nun online in Nature veröffentlich, erläutert, wie Terahertz-Laserpulse die Atome eines Festkörpers zu extrem hohen Auslenkungen treiben können.

Die zeitaufgelöste Messung der sehr unkonventionellen atomaren Bewegungen, die einer Anregung mit extrem starken Lichtpulsen folgen, ermöglichte es der...

Im Focus: Good vibrations feel the force

A group of researchers led by Andrea Cavalleri at the Max Planck Institute for Structure and Dynamics of Matter (MPSD) in Hamburg has demonstrated a new method enabling precise measurements of the interatomic forces that hold crystalline solids together. The paper Probing the Interatomic Potential of Solids by Strong-Field Nonlinear Phononics, published online in Nature, explains how a terahertz-frequency laser pulse can drive very large deformations of the crystal.

By measuring the highly unusual atomic trajectories under extreme electromagnetic transients, the MPSD group could reconstruct how rigid the atomic bonds are...

Im Focus: Verlässliche Quantencomputer entwickeln

Internationalem Forschungsteam gelingt wichtiger Schritt auf dem Weg zur Lösung von Zertifizierungsproblemen

Quantencomputer sollen künftig algorithmische Probleme lösen, die selbst die größten klassischen Superrechner überfordern. Doch wie lässt sich prüfen, dass der...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

Von festen Körpern und Philosophen

23.02.2018 | Veranstaltungen

Spannungsfeld Elektromobilität

23.02.2018 | Veranstaltungen

DFG unterstützt Kongresse und Tagungen - April 2018

21.02.2018 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Vorstoß ins Innere der Atome

23.02.2018 | Physik Astronomie

Wirt oder Gast? Proteomik gibt neue Aufschlüsse über Reaktion von Rifforganismen auf Umweltstress

23.02.2018 | Biowissenschaften Chemie

Wie Zellen unterschiedlich auf Stress reagieren

23.02.2018 | Biowissenschaften Chemie

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics