Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Parallele Bio-Welt mit genetischer Fire-wall

18.04.2011
Neue Wege zur Ganzzellkatalyse durch künstliche Bakterien

Im Berliner Exzellenzcluster UniCat (Unifying Concepts in Catalysis) wird rund um den Biochemiker Nediljko Budisa in Zusammenarbeit mit dem französischen Biologen Philippe Marlière ein neues Konzept entwickelt, um Industriebakterien durch eine neue, bisher nicht in Lebewesen vorkommende Chemie mit neuen katalytischen Funktionen auszustatten. Sie nennen dieses neue biochemische Verfahren „Codonemanzipation“.

Dabei wird eine genetische Firewall errichtet, die die Bakterien von einer speziellen Nährlösung abhängig macht. Damit sind sie in der natürlichen Umwelt nicht lebensfähig, und ein Gentransfer in die Umgebung ist unmöglich.

Budisa und Marliére möchten die „alte“ natürliche Chemie durch eine neue ersetzen. Das soll durch die gerichtete Evolution natürlicher, schnell wachsender Bakterien im Reagenzglas erreicht werden. „Diese Zellen befinden sich gewissermaßen in einer parallelen Welt“, sagt Budisa. „Sie können ihre genetische Information nicht mehr mit anderen Lebewesen austauschen, sie besitzen eine genetische Firewall.“

Zwar wachsen die Bakterien am Anfang in der synthetischen Nährlösung mit der nicht-natürlichen Aminosäure nur sehr schlecht. Doch durch Zucht die über viele Generationen werden sie am Ende „codonemanzipiert“. „Codonemanzipation“ ist die Möglichkeit, lebende Systeme mit einer alternativen Chemie zu versehen. Einerseits wird der Weg zur künstlichen biologischen Vielfalt von der Fachwelt mit Skepsis betrachtet. Andererseits ist im Erfolgsfall ungeheurer Nutzen für industrielle Anwendungen zu erwarten. Zum Beispiel sind neue umweltfreundliche Biokatalysatoren zur Herstellung von Treibstoff, neuer medizinischer Wirkstoffe oder umweltfreundlicher Biomaterialien denkbar. Gleichzeitig trägt dieses Projekt grundlegend dazu bei, Probleme und Bedenken bezüglich der biologischen Sicherheit synthetischer Organismen wissenschaftlich aufzugreifen und in der Öffentlichkeit zu thematisieren.

Diese chemisch modifizierten Bakterien werden für eine theoretisch unbegrenzte Zeit lebensfähig sein und zwar in genetischer Isolation von natürlichen Spezies. Sobald die nicht-natürliche Aminosäure nicht mehr in der Nährlösung angeboten wird, sterben sie ab. Die „Codonemanzipation“ errichtet also einen „genetischen Schutzwall" gegen einen möglichen genetischen Austausch zwischen artifiziellen und natürlichen Zellen.

Philippe Marliére betont: „Wir werden den gesamten genomischen Text der Mikroben im Reagenzglas durch gehäufte Mutationen in rasch wachsenden Zellen unter permanentem Selektionsdruck neu schreiben. Dafür haben wir in den vergangenen zehn Jahren einen Automaten, einen sogenannten Genematen, entwickelt.“

Diese Entwicklungen stehen in der vordersten Front der Synthetischen Biologie. Die Arbeiten der berühmten Amerikaner Craig Venter und George Church sind dagegen mehr oder weniger im Rahmen der klassischen Gentechnik zu betrachten; denn sie basieren auf Kopieren und Resynthetisieren von Strukturen, die in der Natur vorhandenen sind, mit Hilfe von synthetischen DNA-Oligomeren.

Matthias Drieß, der Sprecher des Exzellenzclusters UniCat, ist begeistert von den Aussichten, die die vereinten Kräfte der Wissenschaftler Budisa und Marlière eröffnen: „Dies wird den Bio-Part unseres Clusters enorm stärken. Philippe Marlière ist ein Innovator par excellence, und Nediljko Budisa ein origineller Denker mit hohem intellektuellem Profil, ein harter Arbeiter, der seit Jahrzehnten seine ursprünglichen Ideen und hoch gesteckten Ziele verfolgt, ohne sich vom wissenschaftlichen Mainstream und den Moden in Deutschlands Forschungslandschaft ablenken zu lassen. Er schwimmt erfolgreich gegen alle Ströme. Wir erwarten nicht nur die Entwicklung eines einzigartigen Ganzzellkatalysators, sondern auch die Entwicklung künstlicher Lebensformen mit Funktionen, die bisher nicht von der natürlichen Evolution erfunden wurden.“

Der genetische Code und das Konzept der „Codonemanzipation“

Der genetische Code wurde 1966 aufgeklärt, er ist für alle Lebewesen gleich. Das bedeutet, dass in jedem Organismus eine bestimmte Reihenfolge von Nukleinsäuren in der DNA das gleiche Eiweißmolekül liefert. Der genetische Code bestimmt, wie die Reihenfolge der Basen aus Adenin (A), Cytosin (C), Guanin (G) und Thymin (T) in Eiweiße übersetzt werden. Je drei Basen stehen für eine Aminosäure. Solch ein Triplet nennt man Codon. Es gibt nur 64 Codons, die 20 Aminosäuren bilden. Deshalb sind die meisten Aminosäuren durch mehrere Codons codiert.

Zum Beispiel kann die Aminosäure Arginin durch die sechs Codons CGG, CGA, CGC, CGU, AGG und AGA dargestellt werden. AGG und AGA werden in Bakterien wie Escherichia coli sehr selten benutzt. Deshalb könnten theoretisch zum Beispiel alle AGGs im Erbgut eines Lebewesens einer neuen nichtnatürlichen Aminosäure zugeordnet werden. Die Zelle ist dann „codonemanzipiert“, das heißt die alte natürliche Chemie wurde durch eine neue ersetzt.

Exzellenzcluster Unifying Concepts in Catalysis (UniCat)

„Unifying Concepts in Catalysis“ (UniCat) ist der einzige Exzellenzcluster, der das volkswirtschaftlich wichtige Gebiet der Katalyse erforscht. In diesem interdisziplinären Forschungsverbund arbeiten mehr als 250 Chemiker, Physiker, Biologen und Verfahrenstechniker aus vier Universitäten und zwei Max-Planck-Instituten aus Berlin und Brandenburg zusammen. Sprecherhochschule ist die Technische Universität Berlin. UniCat wird von der Deutschen Forschungsgemeinschaft im Rahmen der Exzellenzinitiative mit rund 5,6 Millionen Euro jährlich gefördert.

Weitere Informationen erteilen Ihnen gern:
Prof. Dr. Nediljko Budisa, Technische Universität Berlin, Institut für Chemie, 030/ 314-23 661, E-Mail: budisa@biocat.tu-berlin.de, Internet: www.biocat.tu-berlin.de

Dr. Martin Penno, Exzellenzcluster UniCat, Öffentlichkeitsarbeit, Technische Universität Berlin, Tel.: 030/314-28592, E-Mail: martin.penno@tu-berlin.de

Referenzen:

Hoesl, M. and Budisa, N. (2011). Paralleler In-vivo-Einbau von mehreren nichtkanonischen Aminosäuren in Proteine. Angewandte Chemie, dt. Ausgabe, Band 123, Seite 2948–2955, vom 21. März, 2011

http://onlinelibrary.wiley.com/doi/10.1002/ange.201005680/abstract

Schmidt, M. (2010), Xenobiology: A new form of life as the ultimate biosafety tool. BioEssays, 32, 322–331

http://onlinelibrary.wiley.com/doi/10.1002/bies.200900147/abstract

Marliere P. (2009). The farther, the safer: a manifesto for securely navigating synthetic species away from the old living world. Syst. Synth. Biol. 3, 77-84.

http://www.springerlink.com/content/j504q5032553n326/

Budisa, N. (2004). Prolegomena to future experimental efforts on genetic code engineering by expanding its amino acid repertoire. Angew. Chem. Int. Ed. Engl. 43, 6426-6463.

http://onlinelibrary.wiley.com/doi/10.1002/anie.200300646/abstract

Stefanie Terp | idw
Weitere Informationen:
http://www.tu-berlin.de/

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Geteiltes Denken ist doppeltes Denken
19.01.2017 | Hertie-Institut für klinische Hirnforschung (HIH)

nachricht Neue CRISPR-Methode enthüllt Genregulation einzelner Zellen
19.01.2017 | CeMM Forschungszentrum für Molekulare Medizin der Österreichischen Akademie der Wissenschaften

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Verkehrsstau im Nichts

Konstanzer Physiker verbuchen neue Erfolge bei der Vermessung des Quanten-Vakuums

An der Universität Konstanz ist ein weiterer bedeutender Schritt hin zu einem völlig neuen experimentellen Zugang zur Quantenphysik gelungen. Das Team um Prof....

Im Focus: Traffic jam in empty space

New success for Konstanz physicists in studying the quantum vacuum

An important step towards a completely new experimental access to quantum physics has been made at University of Konstanz. The team of scientists headed by...

Im Focus: Textiler Hochwasserschutz erhöht Sicherheit

Wissenschaftler der TU Chemnitz präsentieren im Februar und März 2017 ein neues temporäres System zum Schutz gegen Hochwasser auf Baumessen in Chemnitz und Dresden

Auch die jüngsten Hochwasserereignisse zeigen, dass vielerorts das natürliche Rückhaltepotential von Uferbereichen schnell erschöpft ist und angrenzende...

Im Focus: Wie Darmbakterien krank machen

HZI-Forscher entschlüsseln Infektionsmechanismen von Yersinien und Immunantworten des Wirts

Yersinien verursachen schwere Darminfektionen. Um ihre Infektionsmechanismen besser zu verstehen, werden Studien mit dem Modellorganismus Yersinia...

Im Focus: How gut bacteria can make us ill

HZI researchers decipher infection mechanisms of Yersinia and immune responses of the host

Yersiniae cause severe intestinal infections. Studies using Yersinia pseudotuberculosis as a model organism aim to elucidate the infection mechanisms of these...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Nachhaltige Wassernutzung in der Landwirtschaft Osteuropas und Zentralasiens

19.01.2017 | Veranstaltungen

Künftige Rohstoffexperten aus aller Welt in Freiberg zur Winterschule

18.01.2017 | Veranstaltungen

Bundesweiter Astronomietag am 25. März 2017

17.01.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Flashmob der Moleküle

19.01.2017 | Physik Astronomie

Tollwutviren zeigen Verschaltungen im gläsernen Gehirn

19.01.2017 | Medizin Gesundheit

Fraunhofer-Institute entwickeln zerstörungsfreie Qualitätsprüfung für Hybridgussbauteile

19.01.2017 | Verfahrenstechnologie