Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Parallele Bio-Welt mit genetischer Fire-wall

18.04.2011
Neue Wege zur Ganzzellkatalyse durch künstliche Bakterien

Im Berliner Exzellenzcluster UniCat (Unifying Concepts in Catalysis) wird rund um den Biochemiker Nediljko Budisa in Zusammenarbeit mit dem französischen Biologen Philippe Marlière ein neues Konzept entwickelt, um Industriebakterien durch eine neue, bisher nicht in Lebewesen vorkommende Chemie mit neuen katalytischen Funktionen auszustatten. Sie nennen dieses neue biochemische Verfahren „Codonemanzipation“.

Dabei wird eine genetische Firewall errichtet, die die Bakterien von einer speziellen Nährlösung abhängig macht. Damit sind sie in der natürlichen Umwelt nicht lebensfähig, und ein Gentransfer in die Umgebung ist unmöglich.

Budisa und Marliére möchten die „alte“ natürliche Chemie durch eine neue ersetzen. Das soll durch die gerichtete Evolution natürlicher, schnell wachsender Bakterien im Reagenzglas erreicht werden. „Diese Zellen befinden sich gewissermaßen in einer parallelen Welt“, sagt Budisa. „Sie können ihre genetische Information nicht mehr mit anderen Lebewesen austauschen, sie besitzen eine genetische Firewall.“

Zwar wachsen die Bakterien am Anfang in der synthetischen Nährlösung mit der nicht-natürlichen Aminosäure nur sehr schlecht. Doch durch Zucht die über viele Generationen werden sie am Ende „codonemanzipiert“. „Codonemanzipation“ ist die Möglichkeit, lebende Systeme mit einer alternativen Chemie zu versehen. Einerseits wird der Weg zur künstlichen biologischen Vielfalt von der Fachwelt mit Skepsis betrachtet. Andererseits ist im Erfolgsfall ungeheurer Nutzen für industrielle Anwendungen zu erwarten. Zum Beispiel sind neue umweltfreundliche Biokatalysatoren zur Herstellung von Treibstoff, neuer medizinischer Wirkstoffe oder umweltfreundlicher Biomaterialien denkbar. Gleichzeitig trägt dieses Projekt grundlegend dazu bei, Probleme und Bedenken bezüglich der biologischen Sicherheit synthetischer Organismen wissenschaftlich aufzugreifen und in der Öffentlichkeit zu thematisieren.

Diese chemisch modifizierten Bakterien werden für eine theoretisch unbegrenzte Zeit lebensfähig sein und zwar in genetischer Isolation von natürlichen Spezies. Sobald die nicht-natürliche Aminosäure nicht mehr in der Nährlösung angeboten wird, sterben sie ab. Die „Codonemanzipation“ errichtet also einen „genetischen Schutzwall" gegen einen möglichen genetischen Austausch zwischen artifiziellen und natürlichen Zellen.

Philippe Marliére betont: „Wir werden den gesamten genomischen Text der Mikroben im Reagenzglas durch gehäufte Mutationen in rasch wachsenden Zellen unter permanentem Selektionsdruck neu schreiben. Dafür haben wir in den vergangenen zehn Jahren einen Automaten, einen sogenannten Genematen, entwickelt.“

Diese Entwicklungen stehen in der vordersten Front der Synthetischen Biologie. Die Arbeiten der berühmten Amerikaner Craig Venter und George Church sind dagegen mehr oder weniger im Rahmen der klassischen Gentechnik zu betrachten; denn sie basieren auf Kopieren und Resynthetisieren von Strukturen, die in der Natur vorhandenen sind, mit Hilfe von synthetischen DNA-Oligomeren.

Matthias Drieß, der Sprecher des Exzellenzclusters UniCat, ist begeistert von den Aussichten, die die vereinten Kräfte der Wissenschaftler Budisa und Marlière eröffnen: „Dies wird den Bio-Part unseres Clusters enorm stärken. Philippe Marlière ist ein Innovator par excellence, und Nediljko Budisa ein origineller Denker mit hohem intellektuellem Profil, ein harter Arbeiter, der seit Jahrzehnten seine ursprünglichen Ideen und hoch gesteckten Ziele verfolgt, ohne sich vom wissenschaftlichen Mainstream und den Moden in Deutschlands Forschungslandschaft ablenken zu lassen. Er schwimmt erfolgreich gegen alle Ströme. Wir erwarten nicht nur die Entwicklung eines einzigartigen Ganzzellkatalysators, sondern auch die Entwicklung künstlicher Lebensformen mit Funktionen, die bisher nicht von der natürlichen Evolution erfunden wurden.“

Der genetische Code und das Konzept der „Codonemanzipation“

Der genetische Code wurde 1966 aufgeklärt, er ist für alle Lebewesen gleich. Das bedeutet, dass in jedem Organismus eine bestimmte Reihenfolge von Nukleinsäuren in der DNA das gleiche Eiweißmolekül liefert. Der genetische Code bestimmt, wie die Reihenfolge der Basen aus Adenin (A), Cytosin (C), Guanin (G) und Thymin (T) in Eiweiße übersetzt werden. Je drei Basen stehen für eine Aminosäure. Solch ein Triplet nennt man Codon. Es gibt nur 64 Codons, die 20 Aminosäuren bilden. Deshalb sind die meisten Aminosäuren durch mehrere Codons codiert.

Zum Beispiel kann die Aminosäure Arginin durch die sechs Codons CGG, CGA, CGC, CGU, AGG und AGA dargestellt werden. AGG und AGA werden in Bakterien wie Escherichia coli sehr selten benutzt. Deshalb könnten theoretisch zum Beispiel alle AGGs im Erbgut eines Lebewesens einer neuen nichtnatürlichen Aminosäure zugeordnet werden. Die Zelle ist dann „codonemanzipiert“, das heißt die alte natürliche Chemie wurde durch eine neue ersetzt.

Exzellenzcluster Unifying Concepts in Catalysis (UniCat)

„Unifying Concepts in Catalysis“ (UniCat) ist der einzige Exzellenzcluster, der das volkswirtschaftlich wichtige Gebiet der Katalyse erforscht. In diesem interdisziplinären Forschungsverbund arbeiten mehr als 250 Chemiker, Physiker, Biologen und Verfahrenstechniker aus vier Universitäten und zwei Max-Planck-Instituten aus Berlin und Brandenburg zusammen. Sprecherhochschule ist die Technische Universität Berlin. UniCat wird von der Deutschen Forschungsgemeinschaft im Rahmen der Exzellenzinitiative mit rund 5,6 Millionen Euro jährlich gefördert.

Weitere Informationen erteilen Ihnen gern:
Prof. Dr. Nediljko Budisa, Technische Universität Berlin, Institut für Chemie, 030/ 314-23 661, E-Mail: budisa@biocat.tu-berlin.de, Internet: www.biocat.tu-berlin.de

Dr. Martin Penno, Exzellenzcluster UniCat, Öffentlichkeitsarbeit, Technische Universität Berlin, Tel.: 030/314-28592, E-Mail: martin.penno@tu-berlin.de

Referenzen:

Hoesl, M. and Budisa, N. (2011). Paralleler In-vivo-Einbau von mehreren nichtkanonischen Aminosäuren in Proteine. Angewandte Chemie, dt. Ausgabe, Band 123, Seite 2948–2955, vom 21. März, 2011

http://onlinelibrary.wiley.com/doi/10.1002/ange.201005680/abstract

Schmidt, M. (2010), Xenobiology: A new form of life as the ultimate biosafety tool. BioEssays, 32, 322–331

http://onlinelibrary.wiley.com/doi/10.1002/bies.200900147/abstract

Marliere P. (2009). The farther, the safer: a manifesto for securely navigating synthetic species away from the old living world. Syst. Synth. Biol. 3, 77-84.

http://www.springerlink.com/content/j504q5032553n326/

Budisa, N. (2004). Prolegomena to future experimental efforts on genetic code engineering by expanding its amino acid repertoire. Angew. Chem. Int. Ed. Engl. 43, 6426-6463.

http://onlinelibrary.wiley.com/doi/10.1002/anie.200300646/abstract

Stefanie Terp | idw
Weitere Informationen:
http://www.tu-berlin.de/

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Einblick ins geschlossene Enzym
26.06.2017 | Universität Konstanz

nachricht 'Fix Me Another Marguerite!'
23.06.2017 | Universität Regensburg

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Hyperspektrale Bildgebung zur 100%-Inspektion von Oberflächen und Schichten

„Mehr sehen, als das Auge erlaubt“, das ist ein Anspruch, dem die Hyperspektrale Bildgebung (HSI) gerecht wird. Die neue Kameratechnologie ermöglicht, Licht nicht nur ortsaufgelöst, sondern simultan auch spektral aufgelöst aufzuzeichnen. Das bedeutet, dass zur Informationsgewinnung nicht nur herkömmlich drei spektrale Bänder (RGB), sondern bis zu eintausend genutzt werden.

Das Fraunhofer IWS Dresden entwickelt eine integrierte HSI-Lösung, die das Potenzial der HSI-Technologie in zuverlässige Hard- und Software überführt und für...

Im Focus: Can we see monkeys from space? Emerging technologies to map biodiversity

An international team of scientists has proposed a new multi-disciplinary approach in which an array of new technologies will allow us to map biodiversity and the risks that wildlife is facing at the scale of whole landscapes. The findings are published in Nature Ecology and Evolution. This international research is led by the Kunming Institute of Zoology from China, University of East Anglia, University of Leicester and the Leibniz Institute for Zoo and Wildlife Research.

Using a combination of satellite and ground data, the team proposes that it is now possible to map biodiversity with an accuracy that has not been previously...

Im Focus: Klima-Satellit: Mit robuster Lasertechnik Methan auf der Spur

Hitzewellen in der Arktis, längere Vegetationsperioden in Europa, schwere Überschwemmungen in Westafrika – mit Hilfe des deutsch-französischen Satelliten MERLIN wollen Wissenschaftler ab 2021 die Emissionen des Treibhausgases Methan auf der Erde erforschen. Möglich macht das ein neues robustes Lasersystem des Fraunhofer-Instituts für Lasertechnologie ILT in Aachen, das eine bisher unerreichte Messgenauigkeit erzielt.

Methan entsteht unter anderem bei Fäulnisprozessen. Es ist 25-mal wirksamer als das klimaschädliche Kohlendioxid, kommt in der Erdatmosphäre aber lange nicht...

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Future Security Conference 2017 in Nürnberg - Call for Papers bis 31. Juli

26.06.2017 | Veranstaltungen

Von Batterieforschung bis Optoelektronik

23.06.2017 | Veranstaltungen

10. HDT-Tagung: Elektrische Antriebstechnologie für Hybrid- und Elektrofahrzeuge

22.06.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Latest News

Study shines light on brain cells that coordinate movement

26.06.2017 | Life Sciences

Smooth propagation of spin waves using gold

26.06.2017 | Physics and Astronomy

Switchable DNA mini-machines store information

26.06.2017 | Information Technology