Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Ein Paradigmenwechsel

29.05.2012
Prof. Dr. Kay Diederichs und ein amerikanischer Kollege entwickeln Formel zur Verbesserung kristallographischer Methoden

Der Röntgenstrukturanalyse sind wesentliche Teile unserer heutigen Kenntnisse der Struktur von DNA, Enzymen und anderen Proteinen zu verdanken. Mit ihr können im Experiment gewonnene Daten von Kristallen solcher Makromoleküle in ein dreidimensionales Modell umgerechnet werden.

Der Konstanzer Bioinformatiker Prof. Dr. Kay Diederichs und sein amerikanischer Kollege Prof. P. Andrew Karplus, PhD, von der Oregon State University (USA) haben eine neue Methode entwickelt, die eine wesentliche Erweiterung des Methodenarsenals der Röntgenstrukturanalyse beinhaltet: Sie haben eine Formel gefunden, die das aus der Gesamtdatenmenge entwickelte Bild von Molekülen zu schärfen erlaubt und Aussagen über die Genauigkeit des daraus errechneten Modells ermöglicht.

Das bedeutet, dass Positionen und Wechselwirkungen von Atomen genauer bekannt sind, womit beispielsweise die Entwicklung von Medikamenten verbessert werden kann. Die Ergebnisse sind in der aktuellen Ausgabe des Wissenschaftsjournals „Science“ veröffentlicht.

Scharf gebündelte Röntgenstrahlen durchleuchten die Kristallgitter von Proteinen und erzeugen sogenannte Beugungsbilder, deren Daten im Zentrum des Beugungsmusters kräftig und kontrastreich sind. Im Außenbereich werden die Muster hingegen kontrastärmer, weil die Beugungssignale schwächer und zusätzlich von einem Rauschen überlagert sind. Bisher galt: Ab dem Punkt, an dem das Rauschen etwa halb so stark ist wie die Daten selbst, sind diese nicht mehr brauchbar. Das deutsch-amerikanische Team wollte ursprünglich zeigen, dass die Informationen dieser Daten am Rand des Beugungsmusters durchaus wichtig sind. Tatsächlich fanden die beiden Forscher weit mehr heraus:

Mit Hilfe eines russischen Mathematikers entwickelten sie eine Formel, die den Übergang von den Daten zum Modell regelt – und damit einen Paradigmenwechsel in der Röntgenstrukturanalyse bezeichnet. „Erst jetzt wird es möglich, die Datenqualität eins zu eins in Modellqualität umzurechnen und zwischen beiden Aspekten eine Verbindung zu schaffen“, erklärt Kay Diederichs.

Diederichs und Karplus kamen zu dem Schluss, dass die in der Röntgenstrukturanalyse bis dato verwendete statistische Methode, ohnehin ein Sonderweg innerhalb der Statistik, nicht geeignet ist, um die durch die Beugungsbilder erzeugten Daten angemessen zu analysieren. Sie nutzten stattdessen die üblichen statistischen Verfahren, die in den Naturwissenschaften verwendet werden, und fanden so die Formel, die es erlaubt, die Datenqualität in Modellqualität umzurechnen.

Bisher war eine Aussage, wie sich bessere Daten auf die Qualität des Modells auswirken, nur qualitativ möglich. Mit der jetzt gefundenen Formel gibt es eine Art Qualitätskontrolle des Modells. „Es ist eigentlich wie ein Wunder, dass eine geschlossene Formel, die ohne Näherungen auskommt, existiert. Und da die Formel ganz allgemein ist, kann sie im Prinzip auch in anderen Gebieten der Naturwissenschaften angewendet werden: immer dann, wenn viele Daten jeweils mehrfach gemessen wurden“, sagt Kay Diederichs.

Was ist die richtige Art zu entscheiden, ob Daten gut genug sind, um verwendet zu werden? Diederichs und Karplus nutzten das bewährte wissenschaftliche Verfahren, bei dem Versuchsergebnisse anhand von Kontrollexperimenten validiert werden, in Form von sorgfältig durchgeführten Rechnungen. Damit konnten sie zeigen, dass kristallographische Daten bis hinunter zu einem Quotienten des Signal-Rausch-Verhältnisses von 0,5 noch positiven Einfluss auf das Modell haben.

Andy Karplus vergleicht die bessere Datenausnutzung für das Modell mit einem Sehtest beim Augenarzt. Zuerst hat man ein unscharfes Bild. Kommen die Daten am Rand zu denen in der Mitte des Beugungsbildes als Informationen hinzu, wird das Bild nach außen hin schärfer, Einzelheiten werden besser erkennbar. Ist das Bild von Anfang an scharf, gewinnt es mit den zusätzlichen Daten noch an Schärfe hinzu. Handelte es sich um Buchstaben, wären sie besser lesbar – wie nach der Anpassung einer neuen Brille.

Seit 1985, als sich Karplus mit einem Alexander von Humboldt-Stipendium als PostDoc in Deutschland aufhielt, arbeiten Diederichs und Karplus immer wieder zusammen. Kay Diederichs war selber mit einem Lynen-Stipendium derselben Stiftung als PostDoc von 1990 bis 1991 an der Universität von Andrew Karplus. Bereits 1997 veröffentlichten sie einen Artikel zu statistischen Methoden in der Röntgenstrukturanalyse, der zwar wegweisend war, aber eine grundlegende Verbesserung der üblichen, aus heutiger Sicht schlechter geeigneten statistischen Methoden nicht erreichte. Wichtige Impulse erhielt die neue Methode 2011 während eines von der Alexander von Humboldt-Stiftung finanzierten Forschungsaufenthalts von Andrew Karplus im Arbeitsbereich Molekulare Bioinformatik von Kay Diederichs an der Universität Konstanz.

Originalveröffentlichung: P.A. Karplus und K. Diederichs (2012) Linking Crystallographic Model and Data Quality. Science 336, 1030-1033. Siehe auch die „Perspective“ in derselben Ausgabe: Phil Evans (2012) Resolving Some Old Problems in Protein Crystallography. Science 336, 986-987.

Hinweis an die Redaktionen:
Ein Foto von Prof. Dr. Kay Diederichs kann im Folgenden heruntergeladen werden:
http://www.pi.uni-konstanz.de/2012/085-diederichs.jpg
Kontakt:
Universität Konstanz
Kommunikation und Marketing
Telefon: 07531 / 88-3603
E-Mail: kum@uni-konstanz.de
Prof. Dr. Kay Diederichs
Universität Konstanz
Molekulare Bioinformatik
78457 Konstanz
Telefon: 07531 / 88-4049
E-Mail: kay.diederichs@uni-konstanz.de

Julia Wandt | idw
Weitere Informationen:
http://www.uni-konstanz.de

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Neues Schiff für die Fischerei- und Meeresforschung
22.03.2017 | Johann Heinrich von Thünen-Institut, Bundesforschungsinstitut für Ländliche Räume, Wald und Fischerei

nachricht Mit voller Kraft auf Erregerjagd
22.03.2017 | Helmholtz-Zentrum für Infektionsforschung

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Gigantische Magnetfelder im Universum

Astronomen aus Bonn und Tautenburg in Thüringen beobachteten mit dem 100-m-Radioteleskop Effelsberg Galaxienhaufen, das sind Ansammlungen von Sternsystemen, heißem Gas und geladenen Teilchen. An den Rändern dieser Galaxienhaufen fanden sie außergewöhnlich geordnete Magnetfelder, die sich über viele Millionen Lichtjahre erstrecken. Sie stellen die größten bekannten Magnetfelder im Universum dar.

Die Ergebnisse werden am 22. März in der Fachzeitschrift „Astronomy & Astrophysics“ veröffentlicht.

Galaxienhaufen sind die größten gravitativ gebundenen Strukturen im Universum, mit einer Ausdehnung von etwa zehn Millionen Lichtjahren. Im Vergleich dazu ist...

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Auf der Spur des linearen Ubiquitins

Eine neue Methode ermöglicht es, den Geheimcode linearer Ubiquitin-Ketten zu entschlüsseln. Forscher der Goethe-Universität berichten darüber in der aktuellen Ausgabe von "nature methods", zusammen mit Partnern der Universität Tübingen, der Queen Mary University und des Francis Crick Institute in London.

Ubiquitin ist ein kleines Molekül, das im Körper an andere Proteine angehängt wird und so deren Funktion kontrollieren und verändern kann. Die Anheftung...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Physiker erzeugen gezielt Elektronenwirbel

Einem Team um den Oldenburger Experimentalphysiker Prof. Dr. Matthias Wollenhaupt ist es mithilfe ultrakurzer Laserpulse gelungen, gezielt Elektronenwirbel zu erzeugen und diese dreidimensional abzubilden. Damit haben sie einen komplexen physikalischen Vorgang steuern können: die sogenannte Photoionisation oder Ladungstrennung. Diese gilt als entscheidender Schritt bei der Umwandlung von Licht in elektrischen Strom, beispielsweise in Solarzellen. Die Ergebnisse ihrer experimentellen Arbeit haben die Grundlagenforscher kürzlich in der renommierten Fachzeitschrift „Physical Review Letters“ veröffentlicht.

Das Umwandeln von Licht in elektrischen Strom ist ein ultraschneller Vorgang, dessen Details erstmals Albert Einstein in seinen Studien zum photoelektrischen...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Die „Panama Papers“ aus Programmierersicht

22.03.2017 | Veranstaltungen

Über Raum, Zeit und Materie

22.03.2017 | Veranstaltungen

Unter der Haut

22.03.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Die „Panama Papers“ aus Programmierersicht

22.03.2017 | Veranstaltungsnachrichten

Neues Schiff für die Fischerei- und Meeresforschung

22.03.2017 | Biowissenschaften Chemie

Mit voller Kraft auf Erregerjagd

22.03.2017 | Biowissenschaften Chemie