Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Ein Paradigmenwechsel

29.05.2012
Prof. Dr. Kay Diederichs und ein amerikanischer Kollege entwickeln Formel zur Verbesserung kristallographischer Methoden

Der Röntgenstrukturanalyse sind wesentliche Teile unserer heutigen Kenntnisse der Struktur von DNA, Enzymen und anderen Proteinen zu verdanken. Mit ihr können im Experiment gewonnene Daten von Kristallen solcher Makromoleküle in ein dreidimensionales Modell umgerechnet werden.

Der Konstanzer Bioinformatiker Prof. Dr. Kay Diederichs und sein amerikanischer Kollege Prof. P. Andrew Karplus, PhD, von der Oregon State University (USA) haben eine neue Methode entwickelt, die eine wesentliche Erweiterung des Methodenarsenals der Röntgenstrukturanalyse beinhaltet: Sie haben eine Formel gefunden, die das aus der Gesamtdatenmenge entwickelte Bild von Molekülen zu schärfen erlaubt und Aussagen über die Genauigkeit des daraus errechneten Modells ermöglicht.

Das bedeutet, dass Positionen und Wechselwirkungen von Atomen genauer bekannt sind, womit beispielsweise die Entwicklung von Medikamenten verbessert werden kann. Die Ergebnisse sind in der aktuellen Ausgabe des Wissenschaftsjournals „Science“ veröffentlicht.

Scharf gebündelte Röntgenstrahlen durchleuchten die Kristallgitter von Proteinen und erzeugen sogenannte Beugungsbilder, deren Daten im Zentrum des Beugungsmusters kräftig und kontrastreich sind. Im Außenbereich werden die Muster hingegen kontrastärmer, weil die Beugungssignale schwächer und zusätzlich von einem Rauschen überlagert sind. Bisher galt: Ab dem Punkt, an dem das Rauschen etwa halb so stark ist wie die Daten selbst, sind diese nicht mehr brauchbar. Das deutsch-amerikanische Team wollte ursprünglich zeigen, dass die Informationen dieser Daten am Rand des Beugungsmusters durchaus wichtig sind. Tatsächlich fanden die beiden Forscher weit mehr heraus:

Mit Hilfe eines russischen Mathematikers entwickelten sie eine Formel, die den Übergang von den Daten zum Modell regelt – und damit einen Paradigmenwechsel in der Röntgenstrukturanalyse bezeichnet. „Erst jetzt wird es möglich, die Datenqualität eins zu eins in Modellqualität umzurechnen und zwischen beiden Aspekten eine Verbindung zu schaffen“, erklärt Kay Diederichs.

Diederichs und Karplus kamen zu dem Schluss, dass die in der Röntgenstrukturanalyse bis dato verwendete statistische Methode, ohnehin ein Sonderweg innerhalb der Statistik, nicht geeignet ist, um die durch die Beugungsbilder erzeugten Daten angemessen zu analysieren. Sie nutzten stattdessen die üblichen statistischen Verfahren, die in den Naturwissenschaften verwendet werden, und fanden so die Formel, die es erlaubt, die Datenqualität in Modellqualität umzurechnen.

Bisher war eine Aussage, wie sich bessere Daten auf die Qualität des Modells auswirken, nur qualitativ möglich. Mit der jetzt gefundenen Formel gibt es eine Art Qualitätskontrolle des Modells. „Es ist eigentlich wie ein Wunder, dass eine geschlossene Formel, die ohne Näherungen auskommt, existiert. Und da die Formel ganz allgemein ist, kann sie im Prinzip auch in anderen Gebieten der Naturwissenschaften angewendet werden: immer dann, wenn viele Daten jeweils mehrfach gemessen wurden“, sagt Kay Diederichs.

Was ist die richtige Art zu entscheiden, ob Daten gut genug sind, um verwendet zu werden? Diederichs und Karplus nutzten das bewährte wissenschaftliche Verfahren, bei dem Versuchsergebnisse anhand von Kontrollexperimenten validiert werden, in Form von sorgfältig durchgeführten Rechnungen. Damit konnten sie zeigen, dass kristallographische Daten bis hinunter zu einem Quotienten des Signal-Rausch-Verhältnisses von 0,5 noch positiven Einfluss auf das Modell haben.

Andy Karplus vergleicht die bessere Datenausnutzung für das Modell mit einem Sehtest beim Augenarzt. Zuerst hat man ein unscharfes Bild. Kommen die Daten am Rand zu denen in der Mitte des Beugungsbildes als Informationen hinzu, wird das Bild nach außen hin schärfer, Einzelheiten werden besser erkennbar. Ist das Bild von Anfang an scharf, gewinnt es mit den zusätzlichen Daten noch an Schärfe hinzu. Handelte es sich um Buchstaben, wären sie besser lesbar – wie nach der Anpassung einer neuen Brille.

Seit 1985, als sich Karplus mit einem Alexander von Humboldt-Stipendium als PostDoc in Deutschland aufhielt, arbeiten Diederichs und Karplus immer wieder zusammen. Kay Diederichs war selber mit einem Lynen-Stipendium derselben Stiftung als PostDoc von 1990 bis 1991 an der Universität von Andrew Karplus. Bereits 1997 veröffentlichten sie einen Artikel zu statistischen Methoden in der Röntgenstrukturanalyse, der zwar wegweisend war, aber eine grundlegende Verbesserung der üblichen, aus heutiger Sicht schlechter geeigneten statistischen Methoden nicht erreichte. Wichtige Impulse erhielt die neue Methode 2011 während eines von der Alexander von Humboldt-Stiftung finanzierten Forschungsaufenthalts von Andrew Karplus im Arbeitsbereich Molekulare Bioinformatik von Kay Diederichs an der Universität Konstanz.

Originalveröffentlichung: P.A. Karplus und K. Diederichs (2012) Linking Crystallographic Model and Data Quality. Science 336, 1030-1033. Siehe auch die „Perspective“ in derselben Ausgabe: Phil Evans (2012) Resolving Some Old Problems in Protein Crystallography. Science 336, 986-987.

Hinweis an die Redaktionen:
Ein Foto von Prof. Dr. Kay Diederichs kann im Folgenden heruntergeladen werden:
http://www.pi.uni-konstanz.de/2012/085-diederichs.jpg
Kontakt:
Universität Konstanz
Kommunikation und Marketing
Telefon: 07531 / 88-3603
E-Mail: kum@uni-konstanz.de
Prof. Dr. Kay Diederichs
Universität Konstanz
Molekulare Bioinformatik
78457 Konstanz
Telefon: 07531 / 88-4049
E-Mail: kay.diederichs@uni-konstanz.de

Julia Wandt | idw
Weitere Informationen:
http://www.uni-konstanz.de

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Designerviren stacheln Immunabwehr gegen Krebszellen an
26.05.2017 | Universität Basel

nachricht Wachstumsmechanismus der Pilze entschlüsselt
26.05.2017 | Karlsruher Institut für Technologie

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Lässt sich mit Boten-RNA das Immunsystem gegen Staphylococcus aureus scharf schalten?

Staphylococcus aureus ist aufgrund häufiger Resistenzen gegenüber vielen Antibiotika ein gefürchteter Erreger (MRSA) insbesondere bei Krankenhaus-Infektionen. Forscher des Paul-Ehrlich-Instituts haben immunologische Prozesse identifiziert, die eine erfolgreiche körpereigene, gegen den Erreger gerichtete Abwehr verhindern. Die Forscher konnten zeigen, dass sich durch Übertragung von Protein oder Boten-RNA (mRNA, messenger RNA) des Erregers auf Immunzellen die Immunantwort in Richtung einer aktiven Erregerabwehr verschieben lässt. Dies könnte für die Entwicklung eines wirksamen Impfstoffs bedeutsam sein. Darüber berichtet PLOS Pathogens in seiner Online-Ausgabe vom 25.05.2017.

Staphylococcus aureus (S. aureus) ist ein Bakterium, das bei weit über der Hälfte der Erwachsenen Haut und Schleimhäute besiedelt und dabei normalerweise keine...

Im Focus: Can the immune system be boosted against Staphylococcus aureus by delivery of messenger RNA?

Staphylococcus aureus is a feared pathogen (MRSA, multi-resistant S. aureus) due to frequent resistances against many antibiotics, especially in hospital infections. Researchers at the Paul-Ehrlich-Institut have identified immunological processes that prevent a successful immune response directed against the pathogenic agent. The delivery of bacterial proteins with RNA adjuvant or messenger RNA (mRNA) into immune cells allows the re-direction of the immune response towards an active defense against S. aureus. This could be of significant importance for the development of an effective vaccine. PLOS Pathogens has published these research results online on 25 May 2017.

Staphylococcus aureus (S. aureus) is a bacterium that colonizes by far more than half of the skin and the mucosa of adults, usually without causing infections....

Im Focus: Orientierungslauf im Mikrokosmos

Physiker der Universität Würzburg können auf Knopfdruck einzelne Lichtteilchen erzeugen, die einander ähneln wie ein Ei dem anderen. Zwei neue Studien zeigen nun, welches Potenzial diese Methode hat.

Der Quantencomputer beflügelt seit Jahrzehnten die Phantasie der Wissenschaftler: Er beruht auf grundlegend anderen Phänomenen als ein herkömmlicher Rechner....

Im Focus: A quantum walk of photons

Physicists from the University of Würzburg are capable of generating identical looking single light particles at the push of a button. Two new studies now demonstrate the potential this method holds.

The quantum computer has fuelled the imagination of scientists for decades: It is based on fundamentally different phenomena than a conventional computer....

Im Focus: Tumult im trägen Elektronen-Dasein

Ein internationales Team von Physikern hat erstmals das Streuverhalten von Elektronen in einem nichtleitenden Material direkt beobachtet. Ihre Erkenntnisse könnten der Strahlungsmedizin zu Gute kommen.

Elektronen in nichtleitenden Materialien könnte man Trägheit nachsagen. In der Regel bleiben sie an ihren Plätzen, tief im Inneren eines solchen Atomverbunds....

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Meeresschutz im Fokus: Das IASS auf der UN-Ozean-Konferenz in New York vom 5.-9. Juni

24.05.2017 | Veranstaltungen

Diabetes Kongress in Hamburg beginnt heute: Rund 6000 Teilnehmer werden erwartet

24.05.2017 | Veranstaltungen

Wissensbuffet: „All you can eat – and learn”

24.05.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Latest News

How herpesviruses win the footrace against the immune system

26.05.2017 | Life Sciences

Water forms 'spine of hydration' around DNA, group finds

26.05.2017 | Life Sciences

First Juno science results supported by University of Leicester's Jupiter 'forecast'

26.05.2017 | Physics and Astronomy