Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Paket abgeliefert: Neue Kontrastmittel für Kernspin-Diagnostik überwinden Blut-Hirn-Schranke

06.10.2014

Bei der Entwicklung der Xenon-Kernspintomographie ist es Berliner Wissenschaftlern gelungen, winzige Pakete mit molekularen Sonden in Zellen der Blut-Hirn-Schranke einzuschleusen. Mit der neuartigen Diagnostik, die gerade auf dem World Molecular Imaging Congress in Seoul vorgestellt wurde, könnte man das neurologisch so bedeutsame Gewebe durchleuchten – und die „Zustellung“ von Medikamenten durch den Körper wie mit einem Tracking-System verfolgen.

Die neuartige Xenon-Diagnostik ist eine Weiterentwicklung der aus dem klinischen Alltag vertrauten Kernspintomographie, die derzeit weltweit in mehreren Arbeitsgruppen intensiv vorangetrieben wird. Der Gruppe um Leif Schröder am Berliner Leibniz-Institut für Molekulare Pharmakologie (FMP) ist es in den vergangen Jahren gelungen, die Empfindlichkeit der Methode soweit zu erhöhen, dass nun erste medizinischen Einsatzmöglichkeiten erprobt werden können.

In ihrer neuesten Arbeit haben sie die beim Xenon-Kernspintomographen eingesetzten molekularen Sonden in winzige Biomembranbläschen (Liposomen) verpackt und sie gezielt zu dem Typ von Zellen dirigiert, die im menschlichen Körper die Grenze zwischen Blut und Hirnflüssigkeit bilden.

Diese sogenannte Blut-Hirn-Schranke ist eine lebenswichtige Barriere aus dicht gepackten Endothelzellen, die nur wenige Stoffe selektiv durchlässt und das empfindliche Gehirn so vor schädlichen Substanzen schützt. Störungen der Blut-Hirn-Schranke können die Ursache oder auch die Folge verschiedener neurologischer Erkrankungen sein, weshalb es schon länger Versuche gibt, Schäden in der Barriere durch bildgebende Diagnostik sichtbar zu machen.

Bei der Kernspintomographie nutzt man die Eigenschaft mancher Atome aus, in starken Magnetfeldern selbst wie winzige Magnete zu agieren, die dann mit Radiowellen in Resonanz treten können und so Signale aussenden. Die herkömmliche Methode verwendet Wasserstoffatome, die in Gewebe allgegenwärtig sind, allerdings nur sehr schwache Signale aussenden.

Die Xenon-Kernspintomographie dagegen setzt als Signalgeber das Edelgas Xenon in einer bestimmten Form ein – es wird mittels Laserstrahlen "hyperpolarisiert" und sendet dadurch 10.000fach stärkere Signale als normal aus. In einer klinischen Anwendung könnten Patienten zuvor hyperpolarisiertes Xenon inhalieren, das ungiftige Edelgas würde sich dann rasch über den Blutkreislauf im Körper verteilen.

Durch diese Signalverstärkung lassen sich prinzipiell auch bislang unsichtbare Strukturen sichtbar machen, wenn man das Xenon gezielt in den gesuchten Zellen anreichert – und eben dies ist den FMP-Forschern nun erstmals gelungen. Die Xenon-Atome werden während eines Scans in käfigförmigen Cryptophan-Molekülen eingefangen, wodurch sich ihr Signal im Magnetfeld verändert. Die FMP-Forscher haben das Cryptophan nun in Liposomen verpackt, die gut erprobt und verträglich sind, und mit einem molekularen Anker versehen, der sie in die Zellen der Blut-Hirn-Schranke eindringen lässt.

"Das Ganze funktioniert wie eine Art Paketdienst, bei dem wir in unserem Xenon-Kernspintomographen zugleich verfolgen können, wo sich das Paket auf dem Weg zu seinem Ziel gerade befindet", erklärt Matthias Schnurr. Er stellte als Doktorand und Erstautor der Arbeit seine Forschung gerade auf einem internationalen Kongress in Seoul vor und erhielt dafür aufgrund des großen Potenzials der Methode eine Förderung vom Deutschen Akademischen Austauschdienst. Im Prinzip könnte man auf diese Weise sogar Medikamente verabreichen und deren Zustellung im Körper wie mit einem Tracking-System verfolgen.

Noch finden die Versuche an Zellen in Messröhrchen statt, Gruppenleiter Leif Schröder denkt nun über Tierversuche nach. Die Xenon-Kernspintomographie sei derzeit in einem experimentellen Stadium angekommen, in dem viele biologische Anwendungen entwickelt und getestest werden. "Die Idee mit den Liposomen ist durch ein eher zufälliges Gespräch von zwei Doktoranden – Karl Sydow aus Margitta Dathes Arbeitsgruppe und Matthias Schnurr aus meiner Gruppe – hier am FMP entstanden", freut sich Leif Schröder.

"Ich war gleich einverstanden, und da haben wir die Expertise von Margitta Dathes Team mit unserer verknüpft, um einen wichtigen Fortschritt zu erzielen. Aber dass es so gut funktionieren würde, hatte ich nicht erwartet." Die in der Fachzeitschrift „Advanced Healthcare Materials“ veröffentlichten Ergebnisse werden in einer der nächsten Ausgaben mit einem Titelblatt besonders hervorgehoben.

Das Leibniz-Institut für Molekulare Pharmakologie (FMP) gehört zum Forschungsverbund Berlin e.V. (FVB), einem Zusammenschluss von acht natur-, lebens- und umweltwissenschaftlichen Instituten in Berlin. In ihnen arbeiten mehr als 1.500 Mitarbeiter. Die vielfach ausgezeichneten Einrichtungen sind Mitglieder der Leibniz-Gemeinschaft. Entstanden ist der Forschungsverbund 1992 in einer einzigartigen historischen Situation aus der ehemaligen Akademie der Wissenschaften der DDR.

Kontakt:
Dr. Leif Schröder
Leibniz-Institut für Molekulare Pharmakologie (FMP)
lschroeder (at) fmp-berlin.de
Tel.: 0049 30 94793-121

Silke Oßwald
Öffentlichkeitsarbeit
Leibniz-Institut für Molekulare Pharmakologie (FMP)
osswald (at) fmp-berlin.de
Tel.: 0049 30 94793-104

Silke Oßwald | idw - Informationsdienst Wissenschaft
Weitere Informationen:
http://www.fmp-berlin.de/

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Besser lernen dank Zink?
23.03.2017 | Gesellschaft Deutscher Chemiker e.V.

nachricht Raben: "Junggesellen" leben in dynamischen sozialen Gruppen
23.03.2017 | Universität Wien

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Fliegende Intensivstationen: Ultraschallgeräte in Rettungshubschraubern können Leben retten

Etwa 21 Millionen Menschen treffen jährlich in deutschen Notaufnahmen ein. Im Kampf zwischen Leben und Tod zählt für diese Patienten jede Minute. Wenn sie schon kurz nach dem Unfall zielgerichtet behandelt werden können, verbessern sich ihre Überlebenschancen erheblich. Damit Notfallmediziner in solchen Fällen schnell die richtige Diagnose stellen können, kommen in den Rettungshubschraubern der DRF Luftrettung und zunehmend auch in Notarzteinsatzfahrzeugen mobile Ultraschallgeräte zum Einsatz. Experten der Deutschen Gesellschaft für Ultraschall in der Medizin e.V. (DEGUM) schulen die Notärzte und Rettungsassistenten.

Mit mobilen Ultraschallgeräten können Notärzte beispielsweise innere Blutungen direkt am Unfallort identifizieren und sie bei Bedarf auch für Untersuchungen im...

Im Focus: Gigantische Magnetfelder im Universum

Astronomen aus Bonn und Tautenburg in Thüringen beobachteten mit dem 100-m-Radioteleskop Effelsberg Galaxienhaufen, das sind Ansammlungen von Sternsystemen, heißem Gas und geladenen Teilchen. An den Rändern dieser Galaxienhaufen fanden sie außergewöhnlich geordnete Magnetfelder, die sich über viele Millionen Lichtjahre erstrecken. Sie stellen die größten bekannten Magnetfelder im Universum dar.

Die Ergebnisse werden am 22. März in der Fachzeitschrift „Astronomy & Astrophysics“ veröffentlicht.

Galaxienhaufen sind die größten gravitativ gebundenen Strukturen im Universum, mit einer Ausdehnung von etwa zehn Millionen Lichtjahren. Im Vergleich dazu ist...

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Auf der Spur des linearen Ubiquitins

Eine neue Methode ermöglicht es, den Geheimcode linearer Ubiquitin-Ketten zu entschlüsseln. Forscher der Goethe-Universität berichten darüber in der aktuellen Ausgabe von "nature methods", zusammen mit Partnern der Universität Tübingen, der Queen Mary University und des Francis Crick Institute in London.

Ubiquitin ist ein kleines Molekül, das im Körper an andere Proteine angehängt wird und so deren Funktion kontrollieren und verändern kann. Die Anheftung...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Lebenswichtige Lebensmittelchemie

23.03.2017 | Veranstaltungen

Die „Panama Papers“ aus Programmierersicht

22.03.2017 | Veranstaltungen

Über Raum, Zeit und Materie

22.03.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Besser lernen dank Zink?

23.03.2017 | Biowissenschaften Chemie

Lebenswichtige Lebensmittelchemie

23.03.2017 | Veranstaltungsnachrichten

Innenraum-Ortung für dynamische Umgebungen

23.03.2017 | Architektur Bauwesen