Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Ozeanversauerung verändert klimarelevante Funktionen in der obersten Mikroschicht

11.11.2014

Ozeanversauerung kann klimarelevante Funktionen verändern, die in der obersten Schicht des Ozeans ablaufen, erklärt eine Gruppe von Wissenschaftlern im Fachmagazin “Journal of Geophysical Research: Oceans”.

Laut einer Studie, die unter Leitung des GEOMAR Helmholtz Zentrum für Ozeanforschung Kiel stattfand, spiegelt die Chemie in der obersten Mikroschicht biologische Prozesse aus der darunterliegenden Wassersäule.


Mit einer Plexiglasplatte gewinnen Wissenschaftler Proben aus der Wasseroberfläche der Mesokosmen.

Foto: Sonja Endres, GEOMAR

Die Veränderungen könnten Wechselwirkungen zwischen Ozean und Atmosphäre beeinflussen, etwa den Austausch von Gasen oder die Emission von Gischt-Aerosolen, die Sonnenstrahlen streuen oder zur Wolkenbildung beitragen können.

Wie eine Haut trennt die oberste Mikroschicht das Meer von der Atmosphäre. Mit dem Austausch von Gasen und der Freisetzung von Aerosolen aus der Gischt laufen hier gleich zwei Prozesse ab, die unser Klima maßgeblich mitbestimmen.

Während eines Mesokosmen-Experiments beobachteten Wissenschaftler des GEOMAR Helmholtz-Zentrum für Ozeanforschung Kiel, des Alfred Wegener Instituts, Helmholtz-Zentrum für Polar- und Meeresforschung (AWI) und des Leibniz-Instituts für Ostseeforschung Warnemünde (IOW) zum ersten Mal, wie der Ozeanwandel die speziellen physikalischen, chemischen und biologischen Eigenschaften dieses Biofilms verändern kann.

Ihre Ergebnisse beschreiben die Forscher im Fachmagazin „Journal of Geophysical Research: Oceans“. Erstautorin ist Dr. Luisa Galgani, die die Studie als Teil ihrer Doktorarbeit am GEOMAR und am AWI durchführte.

„Viele Experimente haben bereits gezeigt, wie Ozeanversauerung – eine Veränderung in der Ozeanchemie, die durch die Aufnahme menschengemachten Kohlendioxids ausgelöst wird – das Wachstum und die Effizienz mariner Bakterien und das Absinken kohlenstoffhaltiger Partikel beeinflusst“, fasst Dr. Luisa Galgani zusammen.

„Wir wissen, dass sich in der obersten Mikroschicht das selbe organische Material und die selben Mikroorganismen ansammeln, die auch in der Wassersäule darunter zu finden sind. Darum hatten wir erwartet, dass die Mikroschicht Veränderungen wiederspiegelt, die im Zuge der Ozeanversauerung in der Wassersäule stattfinden. Die Prozesse in diesem Mikromilieu zu verstehen ist wichtig, weil sie Auswirkungen auf unser Klima haben können.“

Um die Folgen der Ozeanversauerung zu untersuchen, simulierten die Wissenschaftler verschiedene zukünftige Szenarien in den KOSMOS Mesokosmen (KOSMOS: Kiel Off-Shore Mesocosms for future Ocean Simulations), die sie im Raunefjord in Norwegen platziert hatten. Die neun Schwimmkonstruktionen, von denen jede 75.000 Liter Meerwasser isoliert, wurden auf verschiedene Kohlendioxid-Niveaus gebracht, die für die kommenden Jahrzehnte und Jahrhunderte erwartet werden. Einen Monat lang beprobte das Team um Dr. Galgani die Wasseroberfläche in sechs Mesokosmen mit einer Plexiglasplatte.

Analysen der Proben belegten die Hypothese, dass die organischen Verbindungen an der obersten Mikroschicht die Entwicklung in der Wassersäule abbilden. Außerdem war bei höheren Kohlendioxid-Konzentrationen mehr Bakterioneuston zu finden, marine Bakterien, die an der Wasseroberfläche leben. Die saureren Bedingungen förderten Veränderungen in der Dynamik von organischem Material. Vor allem eiweißhaltige marine Gelpartikel blieben kleiner; sie waren jedoch häufiger vorhanden und dienten als Nährsubstrat. Mikroorganismen waren in größerer Zahl vertreten und konnten das organische Material, das während der Planktonblüte entstand, effizienter umsetzen.

„Aus früheren Studien wissen wir, dass zusätzliches Kohlendioxid marine Bakterien stimuliert“, erklärt Dr. Galgani. „Angesichts unserer Beobachtungen nehmen wir jetzt an, dass dieser Effekt sehr bedeutsam werden kann: Er kann bedeuten, dass Teile des Lebens im Ozean positiv auf die Aufnahme von Kohlendioxid aus der Atmosphäre reagieren – indem der Stoffwechsel der Mikroben an der Grenzschicht zwischen Luft und Wasser angeregt wird.“

Ein gesteigerter bakterieller Abbau könnte auch die organische Zusammensetzung neu entstehender Gischt-Partikel stark beeinflussen. Von ihrer Komposition hängt ab, inwiefern sie als marine Aerosole mit dem Klimasystem interagieren können. Über den Beitrag der marinen Aerosole zum Klima ist noch immer wenig bekannt.

„Wir sind noch weit davon entfernt, zu verstehen, in welcher Weise der Ozean Bausteine für die Wolkenbildung liefert“, betont Prof. Dr. Anja Engel, Leiterin der Gruppe Mikrobielle Biogeochemie am GEOMAR. „Dennoch sind wir davon überzeugt, dass diese Studie uns einen deutlichen Schritt weitergebracht hat. Wir haben uns zum Ziel gesetzt, die Struktur und die Dynamik in der Grenzschicht zwischen Luft und Wasser genauer zu untersuchen. Dann können wir auch besser abschätzen, wie sich die Wechselwirkungen zwischen dem Ozean und der Atmosphäre in der Hoch-CO2-Welt gestalten.“

Die Arbeiten wurden durch die vom Bundesminsterium für Bildung und Forschung (BMBF) geförderten Projekte SOPRAN (Surface Ocean Processes in the Anthropocene) und BIOACID (Biological Impacts of Ocean Acidification) unterstützt und fließen in das internationale Projekt SOLAS (Surface Ocean - Lower Atmosphere Study) ein.

Originalpublikation:
Galgani, L., Stolle. C., Endres, S., Schulz, K. G., Engel, A. (2014), Effects of ocean acidification on the biogenic composition of the seasurface microlayer: Results from a mesocosm study, J. Geophys. Res. Oceans, 119, doi:10.1002/2014JC010188.

Bildmaterial:
Unter www.geomar.de/n2157 steht Bildmaterial zum Download bereit. Video-Footage auf Anfrage.

Ansprechpartner:
Prof. Dr. Anja Engel (GEOMAR FB2/BI) Tel. 0431 600-1510, aengel@geomar.de
Maike Nicolai (GEOMAR Kommunikation & Medien) Tel. 0431 600-2807, mnicolai@geomar.de


Weitere Informationen:

http://www.geomar.de  GEOMAR Helmholtz-Zentrum für Ozeanforschung Kiel
http://www.bioacid.de  BIOACID (Biological Impacts of Ocean Acidification)
http://sopran.pangaea.de  SOPRAN (Surface Ocean Processes in the Anthropocene)
http://www.solas-int.org  SOLAS (Surface Ocean - Lower Atmosphere Study)
http://www.awi.de  Alfred-Wegener-Institut, Helmholtz-Zentrum für Polar- und Meeresforschung
http://www.io-warnemuende.de  Leibniz-Institut für Ostseeforschung Warnemünde

Dr. Andreas Villwock | idw - Informationsdienst Wissenschaft

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Undercover im Kampf gegen Tuberkulose
12.12.2017 | Gesellschaft Deutscher Chemiker e.V.

nachricht Tumoren ordentlich einheizen
12.12.2017 | Gesellschaft Deutscher Chemiker e.V.

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Electromagnetic water cloak eliminates drag and wake

Detailed calculations show water cloaks are feasible with today's technology

Researchers have developed a water cloaking concept based on electromagnetic forces that could eliminate an object's wake, greatly reducing its drag while...

Im Focus: Neue Einblicke in die Materie: Hochdruckforschung in Kombination mit NMR-Spektroskopie

Forschern der Universität Bayreuth und des Karlsruhe Institute of Technology (KIT) ist es erstmals gelungen, die magnetische Kernresonanzspektroskopie (NMR) in Experimenten anzuwenden, bei denen Materialproben unter sehr hohen Drücken – ähnlich denen im unteren Erdmantel – analysiert werden. Das in der Zeitschrift Science Advances vorgestellte Verfahren verspricht neue Erkenntnisse über Elementarteilchen, die sich unter hohen Drücken oft anders verhalten als unter Normalbedingungen. Es wird voraussichtlich technologische Innovationen fördern, aber auch neue Einblicke in das Erdinnere und die Erdgeschichte, insbesondere die Bedingungen für die Entstehung von Leben, ermöglichen.

Diamanten setzen Materie unter Hochdruck

Im Focus: Scientists channel graphene to understand filtration and ion transport into cells

Tiny pores at a cell's entryway act as miniature bouncers, letting in some electrically charged atoms--ions--but blocking others. Operating as exquisitely sensitive filters, these "ion channels" play a critical role in biological functions such as muscle contraction and the firing of brain cells.

To rapidly transport the right ions through the cell membrane, the tiny channels rely on a complex interplay between the ions and surrounding molecules,...

Im Focus: Stabile Quantenbits

Physiker aus Konstanz, Princeton und Maryland schaffen ein stabiles Quantengatter als Grundelement für den Quantencomputer

Meilenstein auf dem Weg zum Quantencomputer: Wissenschaftler der Universität Konstanz, der Princeton University sowie der University of Maryland entwickeln ein...

Im Focus: Realer Versuch statt virtuellem Experiment: Erfolgreiche Prüfung von Nanodrähten

Mit neuartigen Experimenten enträtseln Forscher des Helmholtz-Zentrums Geesthacht und der Technischen Universität Hamburg, warum winzige Metallstrukturen extrem fest sind

Ultraleichte und zugleich extrem feste Werkstoffe – poröse Nanomaterialien aus Metall versprechen hochinteressante Anwendungen unter anderem für künftige...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Innovative Strategien zur Bekämpfung von parasitären Würmern

08.12.2017 | Veranstaltungen

Hohe Heilungschancen bei Lymphomen im Kindesalter

07.12.2017 | Veranstaltungen

Der Roboter im Pflegeheim – bald Wirklichkeit?

05.12.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

E-Mobilität: Neues Hybridspeicherkonzept soll Reichweite und Leistung erhöhen

12.12.2017 | Energie und Elektrotechnik

Wie Brände die Tundra langfristig verändern

12.12.2017 | Ökologie Umwelt- Naturschutz

Gefäßregeneration: Wie sich Wunden schließen

12.12.2017 | Medizin Gesundheit