Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Origami für Moleküle - DNA in Box-Form

11.05.2009
Um den Nanokosmos der Zelle - die Welt der Moleküle - zu untersuchen, greifen Wissenschaftler zunehmend auf die zelluläre Trickkiste zurück. Forschern an der Universität Aarhus (Dänemark) und am Max-Planck-Institut für biophysikalische Chemie (Göttingen) ist es jetzt gelungen, Desoxyribonukleinsäure (DNA)-Moleküle zu entwerfen, die sich von selbst zu winzigen Nanoboxen formen. Über molekulare "Schlösser" lassen sich diese sogar kontrolliert öffnen und schließen. (Nature, 7. Mai 2009)

Wie Viren eine Zelle befallen, wie Nervenzellen Signale weiterleiten oder wie Proteine arbeiten - alle diese Vorgänge spielen sich im Nanokosmos der Zelle ab und sind für unser Auge unsichtbar.


Speziell entworfene DNA-Moleküle falten sich selbstständig zu einer winzigen Nano-Box, die sich kontrolliert öffnen und schließen lässt. Denkbar wäre der Einsatz einer solchen Box als Transportbehälter, um Wirkstoffe in der Zelle zu transportieren und erst an Ort und Stelle freizusetzen. (Bild: Stark / MPIbpc)

Um diese Welt weiter zu erforschen oder sogar in diese einzugreifen, entwickeln Wissenschaftler nicht nur hochauflösende Mikroskope, sondern greifen zunehmend auch auf zelluläre Bausteine zurück. Dabei machen sie sich vor allem einen Trick der Natur zunutze: Viele Zell-Moleküle kommen von selbst "in Form" und lagern sich sogar selbstständig zu höchst komplexen Strukturen zusammen.

DNA, die von selbst in Form kommt

Forscher der Universität Aarhus (Dänemark) und des Max-Planck-Instituts für biophysikalische Chemie (Göttingen) haben jetzt erstmals Desoxyribonukleinsäure (DNA)-Moleküle entworfen, die sich nicht zu verknäuelten DNA-Strängen formen, wie wir sie aus der lebenden Zelle kennen. Stattdessen falten sie sich selbstständig zu einer dreidimensionalen Box. Doch wie bringt man DNA dazu, genau diese Form anzunehmen?

"Wir nutzen aus, dass DNA die Fähigkeit besitzt, sich selbst zu definierten Strukturen zu organisieren. Diese können wir über die Reihenfolge ihrer Basen-Bausteine vorbestimmen", erklärt Jørgen Kjems von der Universität Aarhus. Mithilfe eines speziellen Computer-Verfahrens haben die Wissenschaftler sechs DNA-Stränge entworfen. Jeder dieser DNA-Stränge lässt sich zu einer zweidimensionalen "Miniatur-Wandplatte" zusammenketten. Im nächsten Schritt erfolgte das Design und Anbringen der "Ösen", um die sechs Wandplatten aneinander zu klammern. Der Clou an der Box ist der verschließbare Deckel: Die Box ist mit einem molekularen "Schloss" ausgestattet, das sich über winzige DNA-"Schlüssel" öffnen und schließen lässt.

Struktur unter die "Lupe" genommen

Mit einer Größe von nur 42 x 36 x 36 Nanometern (millionstel Millimetern) und einer Wanddicke von knapp 2.5 Nanometern sind diese DNA-Boxen nanoskopisch klein und weder für unser Auge noch für konventionelle Lichtmikroskope sichtbar. Doch in der Welt der Moleküle bieten sie viel Platz. Auch große makromolekulare Maschinen der Zelle ließen sich darin mühelos verstauen, beispielsweise ein ganzes Ribosom - die "Proteinfabrik" der Zelle.

Dass die DNA-Moleküle tatsächlich richtig gefaltet sind, davon konnten sich die Wissenschafter erst mithilfe ausgeklügelter struktureller Methoden wie der Rasterkraftmikroskopie, der Kryo-Elektronenmikroskopie und der Röntgenkristallographie überzeugen. "Die meisten DNA-Moleküle liegen tatsächlich zu Nanoboxen gefaltet vor", sagt Strukurbiologe Holger Stark, der am Max-Planck-Institut für biophysikalische Chemie und am Göttinger Zentrum für Molekulare Biowissenschaften der Georg-August-Universität forscht. Ob sich die Nano-Box kontrolliert über DNA-"Schlüssel" öffnen und schließen lässt, sehen die Forscher so allerdings nicht. Um dies zu testen, markierten sie den molekularen Schließmechanismus mit zwei unterschiedlichen Fluoreszenzfarbstoffen am Deckel und an der Wand der Box. "Ist die Box geschlossen, sind die beiden Farbstoffe in unmittelbarer Nähe zueinander und wir können ein deutliches Signal messen. Durch Hinzufügen der Schlüssel wurde dieses Signal sehr viel schwächer. Der Abstand zwischen den beiden Farbstoffen hat sich vergrößert - weil sich der Deckel geöffnet hat", erklärt Holger Stark.

Doch wozu lässt sich ein solcher Nano-Transporter einsetzen? Denkbar wäre, dass mit diesem Nanocontainer Wirkstoffe in der Zelle transportiert und erst an Ort und Stelle durch ein spezifisches Signal freigesetzt werden. Aber auch andere Anwendungen wären prinzipiell möglich, beispielsweise DNA-Bauelemente für Mikroelektronik.

Originalveröffentlichung:
Ebbe S. Andersen, Mingdong Dong, Morten M. Nielsen, Kasper Jahn, Ramesh Subramani, Wael Mamdouh, Monika M. Golas, Bjoern Sander, Holger Stark, Cristiano L.P. Oliveira, Jan Skob Pedersen, Viktoria Birkedahl, Flemming Besenbacher, Kurt V. Gothelf, and J?rgen Kjems. Self-assembly of a nano-scale DNA box with a controllable lid. Nature 459, 73-76 (2009) | doi:10.1038/nature07971 Letter.
Kontakt:
Prof. Dr. Holger Stark, Forschungsgruppe Kryo-Elektronenmikroskopie
Max-Planck-Institut für biophysikalische Chemie und
Göttinger Zentrum für Molekulare Biowissenschaften, Universität Göttingen
Tel.: +49 551 201 -1305
Email: hstark1@gwdg.de
Dr. Carmen Rotte, Presse- und Öffentlichkeitsarbeit
Max-Planck-Institut für biophysikalische Chemie, Göttingen
Tel.: +49 551 201 -1304
E-Mail: crotte@gwdg.de

Dr. Carmen Rotte | Max-Planck-Institut
Weitere Informationen:
http://www.mpibpc.mpg.de/groups/pr/PR/2009/09_10/
http://www.mpibpc.mpg.de/groups/stark/
http://www.gwdg.de

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Nanoskopie auf dem Chip: Mikroskopie in HD-Qualität
25.04.2017 | Universität Bielefeld

nachricht Wehrhaft gegen aggressiven Sauerstoff - Metalloxid-Nickelschaum-Elektroden in der Wasseraufspaltung
25.04.2017 | Universität Ulm

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Nanoskopie auf dem Chip: Mikroskopie in HD-Qualität

Neue Erfindung der Universitäten Bielefeld und Tromsø (Norwegen)

Physiker der Universität Bielefeld und der norwegischen Universität Tromsø haben einen Chip entwickelt, der super-auflösende Lichtmikroskopie, auch...

Im Focus: Löschbare Tinte für den 3-D-Druck

Im 3-D-Druckverfahren durch Direktes Laserschreiben können Mikrometer-große Strukturen mit genau definierten Eigenschaften geschrieben werden. Forscher des Karlsruher Institus für Technologie (KIT) haben ein Verfahren entwickelt, durch das sich die 3-D-Tinte für die Drucker wieder ‚wegwischen‘ lässt. Die bis zu hundert Nanometer kleinen Strukturen lassen sich dadurch wiederholt auflösen und neu schreiben - ein Nanometer entspricht einem millionstel Millimeter. Die Entwicklung eröffnet der 3-D-Fertigungstechnik vielfältige neue Anwendungen, zum Beispiel in der Biologie oder Materialentwicklung.

Beim Direkten Laserschreiben erzeugt ein computergesteuerter, fokussierter Laserstrahl in einem Fotolack wie ein Stift die Struktur. „Eine Tinte zu entwickeln,...

Im Focus: Leichtbau serientauglich machen

Immer mehr Autobauer setzen auf Karosserieteile aus kohlenstofffaserverstärktem Kunststoff (CFK). Dennoch müssen Fertigungs- und Reparaturkosten weiter gesenkt werden, um CFK kostengünstig nutzbar zu machen. Das Laser Zentrum Hannover e.V. (LZH) hat daher zusammen mit der Volkswagen AG und fünf weiteren Partnern im Projekt HolQueSt 3D Laserprozesse zum automatisierten Besäumen, Bohren und Reparieren von dreidimensionalen Bauteilen entwickelt.

Automatisiert ablaufende Bearbeitungsprozesse sind die Grundlage, um CFK-Bauteile endgültig in die Serienproduktion zu bringen. Ausgerichtet an einem...

Im Focus: Making lightweight construction suitable for series production

More and more automobile companies are focusing on body parts made of carbon fiber reinforced plastics (CFRP). However, manufacturing and repair costs must be further reduced in order to make CFRP more economical in use. Together with the Volkswagen AG and five other partners in the project HolQueSt 3D, the Laser Zentrum Hannover e.V. (LZH) has developed laser processes for the automatic trimming, drilling and repair of three-dimensional components.

Automated manufacturing processes are the basis for ultimately establishing the series production of CFRP components. In the project HolQueSt 3D, the LZH has...

Im Focus: Wonder material? Novel nanotube structure strengthens thin films for flexible electronics

Reflecting the structure of composites found in nature and the ancient world, researchers at the University of Illinois at Urbana-Champaign have synthesized thin carbon nanotube (CNT) textiles that exhibit both high electrical conductivity and a level of toughness that is about fifty times higher than copper films, currently used in electronics.

"The structural robustness of thin metal films has significant importance for the reliable operation of smart skin and flexible electronics including...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

„Microbiology and Infection“ - deutschlandweit größte Fachkonferenz in Würzburg

25.04.2017 | Veranstaltungen

Berührungslose Schichtdickenmessung in der Qualitätskontrolle

25.04.2017 | Veranstaltungen

Forschungsexpedition „Meere und Ozeane“ mit dem Ausstellungsschiff MS Wissenschaft

24.04.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

„Microbiology and Infection“ - deutschlandweit größte Fachkonferenz in Würzburg

25.04.2017 | Veranstaltungsnachrichten

Auf dem Weg zur lückenlosen Qualitätsüberwachung in der gesamten Lieferkette

25.04.2017 | Verkehr Logistik

Digitalisierung bringt Produktion zurück an den Standort Deutschland

25.04.2017 | Wirtschaft Finanzen