Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Origami für Moleküle - DNA in Box-Form

11.05.2009
Um den Nanokosmos der Zelle - die Welt der Moleküle - zu untersuchen, greifen Wissenschaftler zunehmend auf die zelluläre Trickkiste zurück. Forschern an der Universität Aarhus (Dänemark) und am Max-Planck-Institut für biophysikalische Chemie (Göttingen) ist es jetzt gelungen, Desoxyribonukleinsäure (DNA)-Moleküle zu entwerfen, die sich von selbst zu winzigen Nanoboxen formen. Über molekulare "Schlösser" lassen sich diese sogar kontrolliert öffnen und schließen. (Nature, 7. Mai 2009)

Wie Viren eine Zelle befallen, wie Nervenzellen Signale weiterleiten oder wie Proteine arbeiten - alle diese Vorgänge spielen sich im Nanokosmos der Zelle ab und sind für unser Auge unsichtbar.


Speziell entworfene DNA-Moleküle falten sich selbstständig zu einer winzigen Nano-Box, die sich kontrolliert öffnen und schließen lässt. Denkbar wäre der Einsatz einer solchen Box als Transportbehälter, um Wirkstoffe in der Zelle zu transportieren und erst an Ort und Stelle freizusetzen. (Bild: Stark / MPIbpc)

Um diese Welt weiter zu erforschen oder sogar in diese einzugreifen, entwickeln Wissenschaftler nicht nur hochauflösende Mikroskope, sondern greifen zunehmend auch auf zelluläre Bausteine zurück. Dabei machen sie sich vor allem einen Trick der Natur zunutze: Viele Zell-Moleküle kommen von selbst "in Form" und lagern sich sogar selbstständig zu höchst komplexen Strukturen zusammen.

DNA, die von selbst in Form kommt

Forscher der Universität Aarhus (Dänemark) und des Max-Planck-Instituts für biophysikalische Chemie (Göttingen) haben jetzt erstmals Desoxyribonukleinsäure (DNA)-Moleküle entworfen, die sich nicht zu verknäuelten DNA-Strängen formen, wie wir sie aus der lebenden Zelle kennen. Stattdessen falten sie sich selbstständig zu einer dreidimensionalen Box. Doch wie bringt man DNA dazu, genau diese Form anzunehmen?

"Wir nutzen aus, dass DNA die Fähigkeit besitzt, sich selbst zu definierten Strukturen zu organisieren. Diese können wir über die Reihenfolge ihrer Basen-Bausteine vorbestimmen", erklärt Jørgen Kjems von der Universität Aarhus. Mithilfe eines speziellen Computer-Verfahrens haben die Wissenschaftler sechs DNA-Stränge entworfen. Jeder dieser DNA-Stränge lässt sich zu einer zweidimensionalen "Miniatur-Wandplatte" zusammenketten. Im nächsten Schritt erfolgte das Design und Anbringen der "Ösen", um die sechs Wandplatten aneinander zu klammern. Der Clou an der Box ist der verschließbare Deckel: Die Box ist mit einem molekularen "Schloss" ausgestattet, das sich über winzige DNA-"Schlüssel" öffnen und schließen lässt.

Struktur unter die "Lupe" genommen

Mit einer Größe von nur 42 x 36 x 36 Nanometern (millionstel Millimetern) und einer Wanddicke von knapp 2.5 Nanometern sind diese DNA-Boxen nanoskopisch klein und weder für unser Auge noch für konventionelle Lichtmikroskope sichtbar. Doch in der Welt der Moleküle bieten sie viel Platz. Auch große makromolekulare Maschinen der Zelle ließen sich darin mühelos verstauen, beispielsweise ein ganzes Ribosom - die "Proteinfabrik" der Zelle.

Dass die DNA-Moleküle tatsächlich richtig gefaltet sind, davon konnten sich die Wissenschafter erst mithilfe ausgeklügelter struktureller Methoden wie der Rasterkraftmikroskopie, der Kryo-Elektronenmikroskopie und der Röntgenkristallographie überzeugen. "Die meisten DNA-Moleküle liegen tatsächlich zu Nanoboxen gefaltet vor", sagt Strukurbiologe Holger Stark, der am Max-Planck-Institut für biophysikalische Chemie und am Göttinger Zentrum für Molekulare Biowissenschaften der Georg-August-Universität forscht. Ob sich die Nano-Box kontrolliert über DNA-"Schlüssel" öffnen und schließen lässt, sehen die Forscher so allerdings nicht. Um dies zu testen, markierten sie den molekularen Schließmechanismus mit zwei unterschiedlichen Fluoreszenzfarbstoffen am Deckel und an der Wand der Box. "Ist die Box geschlossen, sind die beiden Farbstoffe in unmittelbarer Nähe zueinander und wir können ein deutliches Signal messen. Durch Hinzufügen der Schlüssel wurde dieses Signal sehr viel schwächer. Der Abstand zwischen den beiden Farbstoffen hat sich vergrößert - weil sich der Deckel geöffnet hat", erklärt Holger Stark.

Doch wozu lässt sich ein solcher Nano-Transporter einsetzen? Denkbar wäre, dass mit diesem Nanocontainer Wirkstoffe in der Zelle transportiert und erst an Ort und Stelle durch ein spezifisches Signal freigesetzt werden. Aber auch andere Anwendungen wären prinzipiell möglich, beispielsweise DNA-Bauelemente für Mikroelektronik.

Originalveröffentlichung:
Ebbe S. Andersen, Mingdong Dong, Morten M. Nielsen, Kasper Jahn, Ramesh Subramani, Wael Mamdouh, Monika M. Golas, Bjoern Sander, Holger Stark, Cristiano L.P. Oliveira, Jan Skob Pedersen, Viktoria Birkedahl, Flemming Besenbacher, Kurt V. Gothelf, and J?rgen Kjems. Self-assembly of a nano-scale DNA box with a controllable lid. Nature 459, 73-76 (2009) | doi:10.1038/nature07971 Letter.
Kontakt:
Prof. Dr. Holger Stark, Forschungsgruppe Kryo-Elektronenmikroskopie
Max-Planck-Institut für biophysikalische Chemie und
Göttinger Zentrum für Molekulare Biowissenschaften, Universität Göttingen
Tel.: +49 551 201 -1305
Email: hstark1@gwdg.de
Dr. Carmen Rotte, Presse- und Öffentlichkeitsarbeit
Max-Planck-Institut für biophysikalische Chemie, Göttingen
Tel.: +49 551 201 -1304
E-Mail: crotte@gwdg.de

Dr. Carmen Rotte | Max-Planck-Institut
Weitere Informationen:
http://www.mpibpc.mpg.de/groups/pr/PR/2009/09_10/
http://www.mpibpc.mpg.de/groups/stark/
http://www.gwdg.de

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Wegbereiter für Vitamin A in Reis
21.07.2017 | Albert-Ludwigs-Universität Freiburg im Breisgau

nachricht Pharmakologie - Im Strom der Bläschen
21.07.2017 | Ludwig-Maximilians-Universität München

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Einblicke unter die Oberfläche des Mars

Die Region erstreckt sich über gut 1000 Kilometer entlang des Äquators des Mars. Sie heißt Medusae Fossae Formation und über ihren Ursprung ist bislang wenig bekannt. Der Geologe Prof. Dr. Angelo Pio Rossi von der Jacobs University hat gemeinsam mit Dr. Roberto Orosei vom Nationalen Italienischen Institut für Astrophysik in Bologna und weiteren Wissenschaftlern einen Teilbereich dieses Gebietes, genannt Lucus Planum, näher unter die Lupe genommen – mithilfe von Radarfernerkundung.

Wie bei einem Röntgenbild dringen die Strahlen einige Kilometer tief in die Oberfläche des Planeten ein und liefern Informationen über die Struktur, die...

Im Focus: Molekulares Lego

Sie können ihre Farbe wechseln, ihren Spin verändern oder von fest zu flüssig wechseln: Eine bestimmte Klasse von Polymeren besitzt faszinierende Eigenschaften. Wie sie das schaffen, haben Forscher der Uni Würzburg untersucht.

Bei dieser Arbeit handele es sich um ein „Hot Paper“, das interessante und wichtige Aspekte einer neuen Polymerklasse behandelt, die aufgrund ihrer Vielfalt an...

Im Focus: Das Universum in einem Kristall

Dresdener Forscher haben in Zusammenarbeit mit einem internationalen Forscherteam einen unerwarteten experimentellen Zugang zu einem Problem der Allgemeinen Realitätstheorie gefunden. Im Fachmagazin Nature berichten sie, dass es ihnen in neuartigen Materialien und mit Hilfe von thermoelektrischen Messungen gelungen ist, die Schwerkraft-Quantenanomalie nachzuweisen. Erstmals konnten so Quantenanomalien in simulierten Schwerfeldern an einem realen Kristall untersucht werden.

In der Physik spielen Messgrößen wie Energie, Impuls oder elektrische Ladung, welche ihre Erscheinungsform zwar ändern können, aber niemals verloren gehen oder...

Im Focus: Manipulation des Elektronenspins ohne Informationsverlust

Physiker haben eine neue Technik entwickelt, um auf einem Chip den Elektronenspin mit elektrischen Spannungen zu steuern. Mit der neu entwickelten Methode kann der Zerfall des Spins unterdrückt, die enthaltene Information erhalten und über vergleichsweise grosse Distanzen übermittelt werden. Das zeigt ein Team des Departement Physik der Universität Basel und des Swiss Nanoscience Instituts in einer Veröffentlichung in Physical Review X.

Seit einigen Jahren wird weltweit untersucht, wie sich der Spin des Elektrons zur Speicherung und Übertragung von Information nutzen lässt. Der Spin jedes...

Im Focus: Manipulating Electron Spins Without Loss of Information

Physicists have developed a new technique that uses electrical voltages to control the electron spin on a chip. The newly-developed method provides protection from spin decay, meaning that the contained information can be maintained and transmitted over comparatively large distances, as has been demonstrated by a team from the University of Basel’s Department of Physics and the Swiss Nanoscience Institute. The results have been published in Physical Review X.

For several years, researchers have been trying to use the spin of an electron to store and transmit information. The spin of each electron is always coupled...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Den Geheimnissen der Schwarzen Löcher auf der Spur

21.07.2017 | Veranstaltungen

Den Nachhaltigkeitskreis schließen: Lebensmittelschutz durch biobasierte Materialien

21.07.2017 | Veranstaltungen

Operatortheorie im Fokus

20.07.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Latest News

NASA looks to solar eclipse to help understand Earth's energy system

21.07.2017 | Earth Sciences

Stanford researchers develop a new type of soft, growing robot

21.07.2017 | Power and Electrical Engineering

Vortex photons from electrons in circular motion

21.07.2017 | Physics and Astronomy