Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Organische Chemie erweitert Funktionalität von Halbleitern

25.11.2016

Aus der Trickkiste der Organischen Chemie: Aktuelle Erkenntnisse mittelhessischer Chemiker und Physiker versprechen, die Halbleitertechnik um vielfältige Anwendungen zu erweitern. Die Forscher schafften es, organische Moleküle mit einer definierten Haftstelle auf Siliziumoberflächen zu verankern. Tragen die organischen Moleküle ausgewählte Anhänge, so bleiben diese frei, um ihre Funktion zu entfalten. Das Team des Sonderforschungsbereichs „Struktur und Dynamik innerer Grenzflächen“ (SFB 1083) berichtet in der aktuellen Ausgabe der Fachzeitschrift „Journal of Physical Chemistry“ über ihre Ergebnisse.

Organische Moleküle bestehen aus Kohlenstoffketten, die ganz verschiedene Anhänge tragen können, sogenannte funktionelle Gruppen. Diese sind für die große Vielfalt an Leistungen verantwortlich, die organische Verbindungen erbringen, etwa als Biomoleküle in den Zellen von Lebewesen. „Wir zeigen zum ersten Mal, wie sich solche funktionalisierte organische Moleküle ganz zielgerichtet auf Siliziumoberflächen verankern lassen“, erklärt der Physikprofessor Dr. Michael Dürr von der Justus-Liebig-Universität Gießen, Seniorautor des wissenschaftlichen Aufsatzes.


Schnittstelle zwischen Halbleitertechnologie und organischer Chemie: Cyclooctin heftet sich selektiv an eine Siliziumoberfläche, so dass weitere funktionale Gruppen frei bleiben.

Abb.: Marcel Reutzel & Michael Dürr; die Abbildung darf nur im Zusammenhang mit der Berichterstattung über die zugehörige wissenschaftliche Veröf-fentlichung verwendet werden.

„Dadurch entsteht eine Schnittstelle zwischen dem Halbleiter und organischen Verbindungen, durch die sich neue Möglichkeiten für eine gesteuerte Funktionalisierung von Halbleitern eröffnen“, ergänzt Mitverfasser Professor Dr. Ulrich Koert, der Organische Chemie an der Philipps-Universität Marburg lehrt.

Halbleiter für Computeranwendungen bestehen meist aus Silizium. Organische Moleküle lassen sich nur schwer auf unbehandelten Silizium-Oberflächen verankern, weil diese sehr reaktionsfreudig sind. Organische Moleküle mit mehreren funktionellen Gruppen haften mal mit dem einen, dann wieder mit einem anderen dieser Anhänge am Untergrund. Dadurch entsteht auf der Oberfläche ein Gemisch von Molekülen, deren frei gebliebene funktionelle Gruppen ganz verschiedene Funktionen erfüllen.

Das Team um Koert und Dürr hat nun erstmals eine Strategie gefunden, wie sich diese Schwierigkeit überwinden lässt; sie soll auf die unterschiedlichsten Einzelfälle anwendbar sein. Die Forscher verwenden organische Moleküle, die als funktionelle Gruppe die Verbindung Cyclooctin tragen. Cyclooctine haben sich als außerordentlich nützlich erwiesen, um selektive Bindungen zwischen Molekülen in lebenden Zellen zu stiften.

Dieses Prinzip übertrugen die Autoren auf die Funktionalisierung von Halbleitern. Wie Koert, Dürr und ihre Mitstreiter zeigen, heftet sich Cyclooctin stets an die Siliziumoberfläche, so dass die weiteren funktionalen Gruppen frei bleiben.

„Mit dieser Veröffentlichung haben wir ein wichtiges Forschungsziel unseres Sonderforschungsbereichs erreicht“, hebt Professor Dr. Ulrich Höfer hervor, Sprecher des SFBs und Koautor des wissenschaftlichen Aufsatzes. „Wir haben eine allgemeine Strategie für den Aufbau einer Schnittstelle zwischen dem Halbleiter Silizium und einer Vielzahl organischer Moleküle entwickelt und erfolgreich demonstriert“, fasst Koert die Ergebnisse zusammen.

„Damit entsteht zugleich eine Schnittstelle zwischen der Halbleitertechnologie und der organischen Chemie, die eine Vielzahl von Anwendungsperspektiven eröffnet.“ Als Beispiel nennen die Autoren die Integration optisch aktiver Schichten auf Silizium-Halbleitern. Eine zeitgleich erscheinende Fachpublikation beschreibt die kontrollierte, schichtweise Synthese mit derselben Klasse von Molekülen in Lösung.

Die Deutsche Forschungsgemeinschaft förderte die zugrundeliegende wissenschaftliche Arbeit durch den Sonderforschungsbereich „Struktur und Dynamik innerer Grenzflächen“ (SFB 1083) sowie durch das Graduiertenkolleg „Funktionalisierung von Halbleitern“ (GRK 1782).

Originalveröffentlichung: Marcel Reutzel & al.: Chemoselective Reactivity of Bifunctional Cyclooctynes on Si(001), The Journal of Physical Chemistry 2016, DOI: http://dx.doi.org/10.1021/acs.jpcc.6b07501

Weitere Informationen:
Ansprechpartner:
Professor Dr. Ulrich Koert,
Philipps-Universität Marburg, Fachgebiet Organische Chemie
Tel.: 06421 28-26970
E-Mail: koert@chemie.uni-marburg.de

Professor Dr. Michael Dürr,
Justus-Liebig-Universität Gießen, Institut für Angewandte Physik
Tel: 0641 9933-490
E-Mail: michael.duerr@ap.physik.uni-giessen.de

Homepage des SFB 1083: http://www.internal-interfaces.de

Medienkontakte:

Justus-Liebig-Universität Gießen
Pressestelle
Ludwigstr. 23
35390 Gießen
T: 0641 99-12041
E: pressestelle@uni-giessen.de
I: http://www.uni-giessen.de

Philipps-Universität Marburg
Pressestelle
Biegenstr. 10
35037 Marburg
T: 06421 28-26216
E: pressestelle@uni-marburg.de
I: http://www.uni-marburg.de

Forschungscampus Mittelhessen
Geschäftsstelle
Senckenbergstraße 3
35390 Gießen
T: 0641 99-16480/-81
E: eva-maria.aulich@fcmh.de

Johannes Scholten | idw - Informationsdienst Wissenschaft

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Wie Reize auf dem Weg ins Bewusstsein versickern
22.09.2017 | Rheinische Friedrich-Wilhelms-Universität Bonn

nachricht Lebendiges Gewebe aus dem Drucker
22.09.2017 | Universitätsklinikum Freiburg

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: The pyrenoid is a carbon-fixing liquid droplet

Plants and algae use the enzyme Rubisco to fix carbon dioxide, removing it from the atmosphere and converting it into biomass. Algae have figured out a way to increase the efficiency of carbon fixation. They gather most of their Rubisco into a ball-shaped microcompartment called the pyrenoid, which they flood with a high local concentration of carbon dioxide. A team of scientists at Princeton University, the Carnegie Institution for Science, Stanford University and the Max Plank Institute of Biochemistry have unravelled the mysteries of how the pyrenoid is assembled. These insights can help to engineer crops that remove more carbon dioxide from the atmosphere while producing more food.

A warming planet

Im Focus: Hochpräzise Verschaltung in der Hirnrinde

Es ist noch immer weitgehend unbekannt, wie die komplexen neuronalen Netzwerke im Gehirn aufgebaut sind. Insbesondere in der Hirnrinde der Säugetiere, wo Sehen, Denken und Orientierung berechnet werden, sind die Regeln, nach denen die Nervenzellen miteinander verschaltet sind, nur unzureichend erforscht. Wissenschaftler um Moritz Helmstaedter vom Max-Planck-Institut für Hirnforschung in Frankfurt am Main und Helene Schmidt vom Bernstein-Zentrum der Humboldt-Universität in Berlin haben nun in dem Teil der Großhirnrinde, der für die räumliche Orientierung zuständig ist, ein überraschend präzises Verschaltungsmuster der Nervenzellen entdeckt.

Wie die Forscher in Nature berichten (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005), haben die...

Im Focus: Highly precise wiring in the Cerebral Cortex

Our brains house extremely complex neuronal circuits, whose detailed structures are still largely unknown. This is especially true for the so-called cerebral cortex of mammals, where among other things vision, thoughts or spatial orientation are being computed. Here the rules by which nerve cells are connected to each other are only partly understood. A team of scientists around Moritz Helmstaedter at the Frankfiurt Max Planck Institute for Brain Research and Helene Schmidt (Humboldt University in Berlin) have now discovered a surprisingly precise nerve cell connectivity pattern in the part of the cerebral cortex that is responsible for orienting the individual animal or human in space.

The researchers report online in Nature (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005) that synapses in...

Im Focus: Tiny lasers from a gallery of whispers

New technique promises tunable laser devices

Whispering gallery mode (WGM) resonators are used to make tiny micro-lasers, sensors, switches, routers and other devices. These tiny structures rely on a...

Im Focus: Wundermaterial Graphen: Gewölbt wie das Polster eines Chesterfield-Sofas

Graphen besitzt extreme Eigenschaften und ist vielseitig verwendbar. Mit einem Trick lassen sich sogar die Spins im Graphen kontrollieren. Dies gelang einem HZB-Team schon vor einiger Zeit: Die Physiker haben dafür eine Lage Graphen auf einem Nickelsubstrat aufgebracht und Goldatome dazwischen eingeschleust. Im Fachblatt 2D Materials zeigen sie nun, warum dies sich derartig stark auf die Spins auswirkt. Graphen kommt so auch als Material für künftige Informationstechnologien infrage, die auf der Verarbeitung von Spins als Informationseinheiten basieren.

Graphen ist wohl die exotischste Form von Kohlenstoff: Alle Atome sind untereinander nur in der Ebene verbunden und bilden ein Netz mit sechseckigen Maschen,...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

11. BusinessForum21-Kongress „Aktives Schadenmanagement"

22.09.2017 | Veranstaltungen

Internationale Konferenz zum Biomining ab Sonntag in Freiberg

22.09.2017 | Veranstaltungen

Die Erde und ihre Bestandteile im Fokus

21.09.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

11. BusinessForum21-Kongress „Aktives Schadenmanagement"

22.09.2017 | Veranstaltungsnachrichten

DFG bewilligt drei neue Forschergruppen und eine neue Klinische Forschergruppe

22.09.2017 | Förderungen Preise

Lebendiges Gewebe aus dem Drucker

22.09.2017 | Biowissenschaften Chemie