Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Organisationsprinzip des menschlichen Genoms identifiziert

13.04.2010
Bedeutende Fortschritte im Bereich der funktionellen Genomik - Internationales Forscherteam präsentiert neue Einblicke in das Organisationsprinzip der menschlichen DNA - Zeitschrift "Nature" würdigt die Ergebnisse als "Research Highlight"

Eine der großen Herausforderungen der Ära nach der Entschlüsselung des menschlichen Genoms ist die Beantwortung der Frage, wie die DNA in der Zelle organisiert ist und zum "Auslesen" der Erbinformation genutzt wird.

Dies würde eine ganze Bandbreite von neuen Anwendungsgebieten und Forschungsfeldern schaffen. So wäre es beispielsweise möglich, auf dieser Grundlage die Entstehung von Erbkrankheiten besser zu verstehen und entsprechend zu reagieren. Schon seit einiger Zeit wird vermutet, dass die menschliche DNA nach einem bestimmten Muster in der Zelle strukturiert ist. Man weiß, dass die jeweils im Zellkern vorliegende DNA einerseits aus kodierenden und andererseits aus nicht-kodierenden Abschnitten besteht.

Ungefähr 98 Prozent der zellulären DNA ist nicht-kodierend, enthält also keine Information für die Synthese von Proteinen. Diese Genabschnitte wurden bislang zumeist als "Müll" ohne nennenswerte Funktion betrachtet.

Einem internationalen Forscherteam, an dem neben einer Arbeitsgruppe um Prof. Dr. Gernot Längst und Dr. Attila Németh vom Institut für Biochemie, Genetik und Mikrobiologie der Universität Regensburg auch Wissenschaftler aus München und dem spanischen Valencia beteiligt waren, gelang es nun durch eine bahnbrechende Arbeit, der nicht-kodierenden DNA eine wichtige Funktion innerhalb des DNA-Netzwerks zuzuweisen. Über die Untersuchung des sogenannten Nucleolus, des Kernkörperchens der Zellen, konnten die Forscher einen wesentlichen Beitrag zum Verständnis des Organisationsprinzips des menschlichen Genoms leisten.

Der Nucleolus befindet sich innerhalb des Zellkerns (Nucleus). Er lässt sich vom Rest des Zellkerns funktionell abgrenzen, verfügt jedoch über keine eigene Membran. Der Nucleolus ist vor allen Dingen in seiner Rolle als Ribosomen-Fabrik der Zellen bekannt. Jüngere Studien weisen aber darauf hin, dass er darüber hinaus noch andere Funktionen hat. So ist der Nucleolus auch an der Stressregulation, Virusprozessierung oder bei Alterungsprozessen beteiligt.

Trotz seiner dem entsprechend großen Bedeutung für die Vorgänge auf zellulärer Ebene war das Wissen um den Aufbau und die Selbst-Organisation des Nucleolus bislang sehr begrenzt. Das internationale Forscherteam unter der Leitung der Regensburger Biologen konnte eine detaillierte Genomkarte der nucleolären DNA erstellen und somit erstmalig das funktionelle Genom eines Zellkern-Organells identifizieren. Weiterhin wurden die DNA-Elemente charakterisiert, die die dreidimensionale Struktur des Nucleolus organisieren. Die Wissenschaftler nutzten hierfür die neuen Methoden der Hochdurchsatz-DNA-Sequenzierung und kombinierten diese mit DNA-Microarray-Experimenten und hochauflösender dreidimensionaler Mikroskopie. Durch die Kombination der Einzelergebnisse der Experimente stellten sie fest, dass spezifische nicht-kodierende Genomabschnitte (spezielle alpha-Satelliten Sequenzen) für den Zusammenbau dieser funktionellen Einheit des Zellkerns verantwortlich sind.

In diesem Zusammenhang wurden ebenfalls mehrere Tausend Gene und nicht-kodierende DNA-Sequenzen identifiziert. Die Wissenschaftler fanden heraus, dass etwa vier Prozent des menschlichen Genoms stabil mit dem Nucleolus verbunden sind. Die Arbeiten des Forscherteams zeigten zudem, dass die Struktur des Nucleolus nicht zufällig, sondern auf dessen konkrete Funktionen in der Zelle bzw. im Zellkern ausgerichtet ist. Die nicht-kodierende DNA spiele, so die Forscher, in diesem DNA-Netzwerk eine entscheidende Rolle.

Die Studien konnten so erstmals einen "Schnappschuss" der Architektur des Nucleolus und dessen Funktion in zwei unterschiedlichen menschlichen Zelltypen liefern, der auf ein spezifisches Organisationsprinzip des menschlichen Genoms verweist. Nach Aussage der Forscher sind allerdings weitere Analysen - auch das Einbeziehen weiterer menschlicher Zelltypen - notwendig. So kann zum einen der Aufbau bzw. die Struktur des Nucleolus während Entwicklungsprozessen und in unterschiedlichen Phasen des Zellzykluses vollständig erfasst werden. Zum anderen soll durch die Analyse der Nucleolus-Genomik verschiedener Organismen geklärt werden, ob das identifizierte Organisationsprinzip des menschlichen Genoms allgemein gilt und sogar evolutionär konserviert ist.

Die Ergebnisse des internationalen Forscherteams wurden in dem renommierten Open-Access-Journal "Plos Genetics" veröffentlicht. Vor kurzem würdigte die Zeitschrift "Nature" die Arbeiten der Wissenschaftler darüber hinaus als "Research Highlight". Prof. Längst ist Leiter der Internationalen Graduiertenschule für Lebenswissenschaften (RIGeL) der Universität Regensburg. Nach einer Anschubfinanzierung durch die Universität wurde das Forschungsprojekt auch durch das Bayerische Genforschungsnetzwerk BayGene gefördert.

Ansprechpartner für Medienvertreter:
Prof. Dr. Gernot Längst
Universität Regensburg
Institut für Biochemie, Genetik und Mikrobiologie
Tel.: 0941 943-2848
Gernot.Laengst@vkl.uni-regensburg.de

Alexander Schlaak | idw
Weitere Informationen:
http://www.uni-regensburg.de

Weitere Berichte zu: Biochemie DNA DNA-Netzwerk Genetik Genom Nucleolus Organisationsprinzip Zelle Zellkern Zelltyp

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Sollbruchstellen im Rückgrat - Bioabbaubare Polymere durch chemische Gasphasenabscheidung
02.12.2016 | Gesellschaft Deutscher Chemiker e.V.

nachricht "Fingerabdruck" diffuser Protonen entschlüsselt
02.12.2016 | Universität Leipzig

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Greifswalder Forscher dringen mit superauflösendem Mikroskop in zellulären Mikrokosmos ein

Das Institut für Anatomie und Zellbiologie weiht am Montag, 05.12.2016, mit einem wissenschaftlichen Symposium das erste Superresolution-Mikroskop in Greifswald ein. Das Forschungsmikroskop wurde von der Deutschen Forschungsgemeinschaft (DFG) und dem Land Mecklenburg-Vorpommern finanziert. Nun können die Greifswalder Wissenschaftler Strukturen bis zu einer Größe von einigen Millionstel Millimetern mittels Laserlicht sichtbar machen.

Weit über hundert Jahre lang galt die von Ernst Abbe 1873 publizierte Theorie zur Auflösungsgrenze von Lichtmikroskopen als ein in Stein gemeißeltes Gesetz....

Im Focus: Durchbruch in der Diabetesforschung: Pankreaszellen produzieren Insulin durch Malariamedikament

Artemisinine, eine zugelassene Wirkstoffgruppe gegen Malaria, wandelt Glukagon-produzierende Alpha-Zellen der Bauchspeicheldrüse (Pankreas) in insulinproduzierende Zellen um – genau die Zellen, die bei Typ-1-Diabetes geschädigt sind. Das haben Forscher des CeMM Forschungszentrum für Molekulare Medizin der Österreichischen Akademie der Wissenschaften im Rahmen einer internationalen Zusammenarbeit mit modernsten Einzelzell-Analysen herausgefunden. Ihre bahnbrechenden Ergebnisse werden in Cell publiziert und liefern eine vielversprechende Grundlage für neue Therapien gegen Typ-1 Diabetes.

Seit einigen Jahren hatten sich Forscher an diesem Kunstgriff versucht, der eine simple und elegante Heilung des Typ-1 Diabetes versprach: Die vom eigenen...

Im Focus: Makromoleküle: Mit Licht zu Präzisionspolymeren

Chemikern am Karlsruher Institut für Technologie (KIT) ist es gelungen, den Aufbau von Präzisionspolymeren durch lichtgetriebene chemische Reaktionen gezielt zu steuern. Das Verfahren ermöglicht die genaue, geplante Platzierung der Kettengliedern, den Monomeren, entlang von Polymerketten einheitlicher Länge. Die präzise aufgebauten Makromoleküle bilden festgelegte Eigenschaften aus und eignen sich möglicherweise als Informationsspeicher oder synthetische Biomoleküle. Über die neuartige Synthesereaktion berichten die Wissenschaftler nun in der Open Access Publikation Nature Communications. (DOI: 10.1038/NCOMMS13672)

Chemische Reaktionen lassen sich durch Einwirken von Licht bei Zimmertemperatur auslösen. Die Forscher am KIT nutzen diesen Effekt, um unter Licht die...

Im Focus: Neuer Sensor: Was im Inneren von Schneelawinen vor sich geht

Ein neuer Radarsensor erlaubt Einblicke in die inneren Vorgänge von Schneelawinen. Entwickelt haben ihn Ingenieure der Ruhr-Universität Bochum (RUB) um Dr. Christoph Baer und Timo Jaeschke gemeinsam mit Kollegen aus Innsbruck und Davos. Das Messsystem ist bereits an einem Testhang im Wallis installiert, wo das Schweizer Institut für Schnee- und Lawinenforschung im Winter 2016/17 Messungen damit durchführen möchte.

Die erhobenen Daten sollen in Simulationen einfließen, die das komplexe Geschehen im Inneren von Lawinen detailliert nachbilden. „Was genau passiert, wenn sich...

Im Focus: Neuer Rekord an BESSY II: 10 Millionen Ionen erstmals bis auf 7,4 Kelvin gekühlt

Magnetische Grundzustände von Nickel2-Ionen spektroskopisch ermittelt

Ein internationales Team aus Deutschland, Schweden und Japan hat einen neuen Temperaturrekord für sogenannte Quadrupol-Ionenfallen erreicht, in denen...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Von „Coopetition“ bis „Digitale Union“ – Die Fertigungsindustrien im digitalen Wandel

02.12.2016 | Veranstaltungen

Experten diskutieren Perspektiven schrumpfender Regionen

01.12.2016 | Veranstaltungen

Die Perspektiven der Genom-Editierung in der Landwirtschaft

01.12.2016 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Parkinson-Krankheit und Dystonien: DFG-Forschergruppe eingerichtet

02.12.2016 | Förderungen Preise

Smart Data Transformation – Surfing the Big Wave

02.12.2016 | Studien Analysen

Nach der Befruchtung übernimmt die Eizelle die Führungsrolle

02.12.2016 | Biowissenschaften Chemie