Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Optogenetik: Natriumpumpe als Lichtschalter

15.04.2015

Die Struktur der lichtgetriebenen Ionenpumpe KR2 liefert eine Blaupause für mögliche neue Werkzeuge der Optogenetik

Forschern aus Jülich, Frankfurt, Grenoble und Moskau ist es gelungen, die Struktur der lichtaktivierten bakteriellen Ionenpumpe KR2 zu entschlüsseln und sie anschließend mit einfachen Mitteln von einer Natrium- in eine Kaliumpumpe umzuwandeln. In Nervenzellen eingebaut könnte KR2 damit zu wertvollen neuen Werkzeugen für die Optogenetik führen. Lichtempfindliche Proteine werden von dieser noch jungen Forschungsdisziplin als molekulare Schalter genutzt, um die Aktivität von Neuronen und anderen elektrisch erregbaren Zellen durch gezielte Lichtimpulse zu steuern.


Der KR2-Komplex in der seitlichen Oberflächendarstellung. Jedes der fünf KR2-Moleküle in der Formation bindet und transportiert ein Natrium-Ion (lila).

© Forschungszentrum Jülich/IBS Grenoble

Manchmal ist der Weg vom Meeresbakterium zum Instrument der Hirnforschung nicht lang: So etwa im Falle der molekularen Ionenpumpe KR2, die 2013 in der Zellwand des Bakteriums Krokinobacter eikastus entdeckt wurde. KR2 gehört zu einer Klasse von lichtempfindlichen Proteinen, die zur Basis des Forschungsgebietes der Optogenetik geworden sind. Bei Belichtung lassen sie geladene Teilchen in die Zelle strömen oder transportieren sie nach außen.

Baut man diese Ionentransporter in die Membran von Nervenzellen ein, lässt sich deren Ladungszustand anschließend durch Lichtreize gezielt verändern, sodass ihre Aktivität präzise steuerbar wird. Besonders in den Neurowissenschaften hat sich das Verfahren in kürzester Zeit etabliert. Bislang stehen dafür allerdings nur wenige Proteine zur Verfügung, von denen jedes nur für bestimmte Ionen durchlässig ist.

Eine Pumpe wie KR2, die positiv geladene Natrium-Ionen aus der Zelle heraus transportiert, fehlt im Werkzeugkasten der Optogenetik bis jetzt. Allerdings waren bisher weder die genaue atomare Struktur noch der Mechanismus des Ionentransports bekannt. Um die Pumpe nutzbar zu machen und für gezielte Anwendungen anpassen zu können, wäre diese Kenntnis eine wichtige Voraussetzung. Dadurch weckte KR2 das Interesse von Strukturbiologen um Valentin Gordeliy, der Forschungsgruppen am Jülicher Institute of Complex Systems (ICS-6), am Institute de Biologie Structurale in Grenoble und am Moscow Institute of Physics and Technology leitet. Mit dem Verfahren der Röntgenkristallographie gewannen Gordeliy und sein Team hochaufgelöste Strukturbilder des Einzelproteins und des fünfteiligen Komplexes, zu dem sich KR2-Moleküle unter physiologischen Bedingungen von selbst zusammenfügen.

„Die Struktur weist Elemente auf, die man bisher von keiner anderen Ionenpumpe kennt“, sagt Ivan Gushchin, einer der Erstautoren der Studie. Dazu gehört zum Beispiel eine Art Deckel in Form einer kurzen Proteinhelix, die direkt über der äußeren Öffnung der Pumpe liegt. Besonders interessierte die Forscher jedoch eine ungewöhnlich geformte Struktur im Inneren des Kanals entlang des Weges, den das Natrium-Ion nehmen muss. „Wir vermuteten darin eine Art Filterelement, das vielleicht für die Natrium-Selektivität von KR2 verantwortlich sein könnte“, erklärt Gushchin.

Um diese Idee zu testen, veränderten Gordeliy und sein Team die Struktur an der fraglichen Stelle durch den gezielten Austausch einzelner Aminosäuren. Nicht nur verlor KR2 dabei tatsächlich seine Fähigkeit zum Natriumionen-Transport. Bei einer der Mutationen schien sich KR2 von einer Natrium- in eine Kalium-Pumpe umzuwandeln. In gemeinsamen Experimenten mit Ernst Bamberg am Max-Planck-Institut für Biophysik in Frankfurt am Main, einem Experten für Membranproteine, der zu den Begründern der Optogenetik zählt, konnte dieses Ergebnis auf Grund elektrophysiologischer Untersuchungen am gereinigten Protein bestätigt werden.

Für die Optogenetik könnte dieses Resultat ganz besonders interessant werden, erklärt Ernst Bamberg: „Bei Neuronen ist der Transport von Kalium-Ionen aus der Zelle gewissermaßen der natürliche Mechanismus für die Deaktivierung. Aktivierte Neuronen werden in den Ruhezustand zurückversetzt, wenn Kalium-Ionen aus der Zelle strömen. Normalerweise geschieht das über passive Kanäle, durch die sich die Ionen von selbst entlang des Konzentrationsgefälles bewegen. Mit einer durch Licht aktivierbaren nach außen gerichteten Kalium-Pumpe ließe sich der Vorgang dagegen auf viel gezieltere Weise steuern.“

KR2 könnte damit zu einem effektiven Aus-Schalter für Nervenzellen werden. Zunächst müssten nun allerdings Wege gefunden werden, die Pumpe in verschiedene Zelltypen einzubauen. „Zusammen mit Channelrhodopsin 2, einem lichtgesteuerten Kationenkanal, der heute bereits weltweit in vielen Labors für die Aktivierung von Neuronen eingesetzt wird, würde die Kaliumpumpe dann ein ideales Paar bilden, um Nervenzellen präzise an- und abzuschalten“, so der Forscher.


Ansprechpartner

Prof. Dr. Ernst Bamberg
Max-Planck-Institut für Biophysik, Frankfurt am Main
Telefon: +49 69 6303-2000

Fax: +49 69 6303-2002

E-Mail: secretary-bamberg@biophys.mpg.de

 
Prof. Dr. Valentin Gordeliy
Institute of Complex Systems, Strukturbiochemie (ICS-6)

Forschungszentrum Jülich
Telefon: +49 2461 61-9509

E-Mail: g.valentin@fz-juelich.de


Originalpublikation


Ivan Gushchin, Vitaly Shevchenko, Vitaly Polovinkin, Kirill Kovalev, Alexey Alekseev, Ekaterina Round, Valentin Borshchevskiy, Taras Balandin, Alexander Popov, Thomas Gensch, Christoph Fahlke, Christian Bamann, Dieter Willbold, Georg Büldt, Ernst Bamberg & Valentin Gordeliy:

Crystal structure of a light-driven sodium pump.

Nature Structural & Molecular Biology, 6 April 2015 (doi:10.1038/nsmb.3002)

Prof. Dr. Ernst Bamberg | Max-Planck-Institut für Biophysik, Frankfurt am Main

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Eine Karte der Zellkraftwerke
18.08.2017 | Albert-Ludwigs-Universität Freiburg im Breisgau

nachricht Chronische Infektionen aushebeln: Ein neuer Wirkstoff auf dem Weg in die Entwicklung
18.08.2017 | Deutsches Zentrum für Infektionsforschung

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Unterwasserroboter soll nach einem Jahr in der arktischen Tiefsee auftauchen

Am Dienstag, den 22. August wird das Forschungsschiff Polarstern im norwegischen Tromsø zu einer besonderen Expedition in die Arktis starten: Der autonome Unterwasserroboter TRAMPER soll nach einem Jahr Einsatzzeit am arktischen Tiefseeboden auftauchen. Dieses Gerät und weitere robotische Systeme, die Tiefsee- und Weltraumforscher im Rahmen der Helmholtz-Allianz ROBEX gemeinsam entwickelt haben, werden nun knapp drei Wochen lang unter Realbedingungen getestet. ROBEX hat das Ziel, neue Technologien für die Erkundung schwer erreichbarer Gebiete mit extremen Umweltbedingungen zu entwickeln.

„Auftauchen wird der TRAMPER“, sagt Dr. Frank Wenzhöfer vom Alfred-Wegener-Institut, Helmholtz-Zentrum für Polar- und Meeresforschung (AWI) selbstbewusst. Der...

Im Focus: Mit Barcodes der Zellentwicklung auf der Spur

Darüber, wie sich Blutzellen entwickeln, existieren verschiedene Auffassungen – sie basieren jedoch fast ausschließlich auf Experimenten, die lediglich Momentaufnahmen widerspiegeln. Wissenschaftler des Deutschen Krebsforschungszentrums stellen nun im Fachjournal Nature eine neue Technik vor, mit der sich das Geschehen dynamisch erfassen lässt: Mithilfe eines „Zufallsgenerators“ versehen sie Blutstammzellen mit genetischen Barcodes und können so verfolgen, welche Zelltypen aus der Stammzelle hervorgehen. Diese Technik erlaubt künftig völlig neue Einblicke in die Entwicklung unterschiedlicher Gewebe sowie in die Krebsentstehung.

Wie entsteht die Vielzahl verschiedener Zelltypen im Blut? Diese Frage beschäftigt Wissenschaftler schon lange. Nach der klassischen Vorstellung fächern sich...

Im Focus: Fizzy soda water could be key to clean manufacture of flat wonder material: Graphene

Whether you call it effervescent, fizzy, or sparkling, carbonated water is making a comeback as a beverage. Aside from quenching thirst, researchers at the University of Illinois at Urbana-Champaign have discovered a new use for these "bubbly" concoctions that will have major impact on the manufacturer of the world's thinnest, flattest, and one most useful materials -- graphene.

As graphene's popularity grows as an advanced "wonder" material, the speed and quality at which it can be manufactured will be paramount. With that in mind,...

Im Focus: Forscher entwickeln maisförmigen Arzneimittel-Transporter zum Inhalieren

Er sieht aus wie ein Maiskolben, ist winzig wie ein Bakterium und kann einen Wirkstoff direkt in die Lungenzellen liefern: Das zylinderförmige Vehikel für Arzneistoffe, das Pharmazeuten der Universität des Saarlandes entwickelt haben, kann inhaliert werden. Professor Marc Schneider und sein Team machen sich dabei die körpereigene Abwehr zunutze: Makrophagen, die Fresszellen des Immunsystems, fressen den gesundheitlich unbedenklichen „Nano-Mais“ und setzen dabei den in ihm enthaltenen Wirkstoff frei. Bei ihrer Forschung arbeiteten die Pharmazeuten mit Forschern der Medizinischen Fakultät der Saar-Uni, des Leibniz-Instituts für Neue Materialien und der Universität Marburg zusammen Ihre Forschungsergebnisse veröffentlichten die Wissenschaftler in der Fachzeitschrift Advanced Healthcare Materials. DOI: 10.1002/adhm.201700478

Ein Medikament wirkt nur, wenn es dort ankommt, wo es wirken soll. Wird ein Mittel inhaliert, muss der Wirkstoff in der Lunge zuerst die Hindernisse...

Im Focus: Exotische Quantenzustände: Physiker erzeugen erstmals optische „Töpfe" für ein Super-Photon

Physikern der Universität Bonn ist es gelungen, optische Mulden und komplexere Muster zu erzeugen, in die das Licht eines Bose-Einstein-Kondensates fließt. Die Herstellung solch sehr verlustarmer Strukturen für Licht ist eine Voraussetzung für komplexe Schaltkreise für Licht, beispielsweise für die Quanteninformationsverarbeitung einer neuen Computergeneration. Die Wissenschaftler stellen nun ihre Ergebnisse im Fachjournal „Nature Photonics“ vor.

Lichtteilchen (Photonen) kommen als winzige, unteilbare Portionen vor. Viele Tausend dieser Licht-Portionen lassen sich zu einem einzigen Super-Photon...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

European Conference on Eye Movements: Internationale Tagung an der Bergischen Universität Wuppertal

18.08.2017 | Veranstaltungen

Einblicke ins menschliche Denken

17.08.2017 | Veranstaltungen

Eröffnung der INC.worX-Erlebniswelt während der Technologie- und Innovationsmanagement-Tagung 2017

16.08.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Eine Karte der Zellkraftwerke

18.08.2017 | Biowissenschaften Chemie

Chronische Infektionen aushebeln: Ein neuer Wirkstoff auf dem Weg in die Entwicklung

18.08.2017 | Biowissenschaften Chemie

Computer mit Köpfchen

18.08.2017 | Informationstechnologie