Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Optogenetik: Lichtschalter aktiviert zellulären Botenstoff

10.09.2015

Ein Licht empfindliches Protein aus einem Schimmelpilz erweitert den optogenetischen Baukasten. Das Protein setzt einen wichtigen Botenstoff frei und erlaubt somit, Signalkaskaden in der Zelle zu erforschen. Das berichten Frankfurter und Würzburger Forscher in der aktuellen Ausgabe der Fachzeitschrift Nature Communications.

Die Optogenetik ist ein noch junges Forschungsgebiet, das die neuro- und zellbiologische Forschungslandschaft weltweit revolutioniert hat. Sie verwendet natürliche oder maßgeschneiderte licht-empfindliche Proteine, um Nervenzellen mit bisher nicht gekannter Genauigkeit zeitlich und räumlich elektrodenfrei an- und abzuschalten.


Der optogenetisch modifizierte Fadenwurm C. elegans exprimiert in seinen Körperwandmuskeln das Protein CyclOp (rot) zusammen mit einem cGMP-aktivierten Ionenkanal (grün).

AK Gottschalk/Goethe-Universität

Grundlegend war im Jahr 2002 die Entdeckung des Licht-aktivierbaren Ionenkanals Channelrhodopsin in Algen. Frankfurter Wissenschaftlern um Prof. Alexander Gottschalk gelang es 2005, das Protein in den durchsichtigen Fadenwurm C. elegans zu transferieren und so dessen Bewegungen mit Licht zu steuern.

Gemeinsam mit Wissenschaftlern der Universität Würzburg hat Gottschalk den optogenetischen Baukasten jetzt um ein weiteres Werkzeug erweitert: Das Protein aus dem aquatischen Pilz Blastocladiella emersonii.

Wie die Arbeitsgruppe um Prof. Alexander Gottschalk in der aktuellen Ausgabe der Fachzeitschrift „Nature Communications“ berichtet, bildet das vom dem im Wasser lebenden Schimmelpilz gebildete Protein CyclOp bei Belichtung den Botenstoff cGMP.

Dieser wichtige zelluläre Botenstoff ist am Sehprozess, an der Regulation des Blutdrucks, am induzierten Zelltod, aber auch an der Regulation der männlichen Erektion beteiligt. So führt das Präparat Viagra zu einem Anstieg des cGMP Niveaus in den Zellen.

Bringt man CyclOp in einen Organismus wie den Fadenwurm Caenorhabditis elegans ein, kann man Signalwege innerhalb der Zelle untersuchen. Die Optogenetik geht damit einen Schritt über die bisherige Forschung hinaus.

„Das Licht-aktivierte Enzym CyclOp hat hervorragende molekulare Eigenschaften, die es als wertvolle Erweiterung des optogenetischen Werkzeugkastens für die Zell- und Neurobiologen qualifizieren“, erklärt Prof. Gottschalk vom Institut für Molekulare Zellbiologie und Neurobiochemie an der Goethe-Universität.

Gemeinsam mit den Kollegen aus Würzburg hat seine Arbeitsgruppe das Protein in Sauerstoff-sensorische Zellen eingeschleust, um herauszufinden, welche Rolle der Botenstoff cGMP in diesen Zellen spielt. Dazu wird der durchsichtige Fadenwurm beleuchtet, so dass cGMP vermehrt ausgeschüttet wird.

Die Zellen reagierten darauf, als ob sie einen Anstieg der Sauerstoffkonzentration detektiert hätten. Somit konnten sie mithilfe von CyclOp besser verstehen, wie das natürliche Signal für diese Zellen in eine zelluläre Antwort umgesetzt wird.

Publikation
S. Gao, J. Nagpal, M. Schneider, V. Kozjak-Pavlovic, G. Nagel, A., Gottschalk A. (2015) Optogenetic manipulation of cGMP in cells and animals by the tightly light-regulated guanylyl-cyclase opsin CyclOp. Nature Communications (8. September 2015), DOI: 10.1038/NCOMMS9046

http://www.nature.com/ncomms/index.html

Informationen: Prof. Alexander Gottschalk, Institut für Biochemie und Buchmann Institut für molekulare Lebenswissenschaften, Campus Riedberg, Tel.: (069) 798-42518, a.gottschalk@em.uni-frankfurt.de.

Die Goethe-Universität ist eine forschungsstarke Hochschule in der europäischen Finanzmetropole Frankfurt. 1914 gegründet mit rein privaten Mitteln von freiheitlich orientierten Frankfurter Bürgerinnen und Bürgern fühlt sie sich als Bürgeruniversität bis heute dem Motto "Wissenschaft für die Gesellschaft" in Forschung und Lehre verpflichtet. Viele der Frauen und Männer der ersten Stunde waren jüdische Stifter. In den letzten 100 Jahren hat die Goethe-Universität Pionierleistungen erbracht auf den Feldern der Sozial-, Gesellschafts- und Wirtschaftswissenschaften, Chemie, Quantenphysik, Hirnforschung und Arbeitsrecht. Am 1. Januar 2008 gewann sie mit der Rückkehr zu ihren historischen Wurzeln als Stiftungsuniversität ein einzigartiges Maß an Eigenständigkeit. Heute ist sie eine der zehn drittmittelstärksten und drei größten Universitäten Deutschlands mit drei Exzellenzclustern in Medizin, Lebenswissenschaften sowie Geisteswissenschaften."

Herausgeber: Die Präsidentin
Abteilung Marketing und Kommunikation,
60629 Frankfurt am Main
Redaktion: Dr. Anne Hardy, Referentin für Wissenschaftskommunikation Theodor-W.-Adorno-Platz 1, 60323 Frankfurt am Main Telefon (069) 798 – 1 24 98, Telefax (069) 798 – 763 12531, E-Mail hardy@pvw.uni-frankfurt.de
Internet: www.uni-frankfurt.de

Dr. Anne Hardy | idw - Informationsdienst Wissenschaft

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Neue Materialchemie für Hochleistungsbatterien
19.09.2017 | Technische Universität Berlin

nachricht Zentraler Schalter der Immunabwehr gefunden
19.09.2017 | Medizinische Hochschule Hannover

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Wundermaterial Graphen: Gewölbt wie das Polster eines Chesterfield-Sofas

Graphen besitzt extreme Eigenschaften und ist vielseitig verwendbar. Mit einem Trick lassen sich sogar die Spins im Graphen kontrollieren. Dies gelang einem HZB-Team schon vor einiger Zeit: Die Physiker haben dafür eine Lage Graphen auf einem Nickelsubstrat aufgebracht und Goldatome dazwischen eingeschleust. Im Fachblatt 2D Materials zeigen sie nun, warum dies sich derartig stark auf die Spins auswirkt. Graphen kommt so auch als Material für künftige Informationstechnologien infrage, die auf der Verarbeitung von Spins als Informationseinheiten basieren.

Graphen ist wohl die exotischste Form von Kohlenstoff: Alle Atome sind untereinander nur in der Ebene verbunden und bilden ein Netz mit sechseckigen Maschen,...

Im Focus: Hochautomatisiertes Fahren bei Schnee und Regen: Robuste Warnehmung dank intelligentem Sensormix

Schlechte Sichtverhältnisse bei Regen oder Schnellfall sind für Menschen und hochautomatisierte Fahrzeuge eine große Herausforderung. Im europäischen Projekt RobustSENSE haben die Forscher von Fraunhofer FOKUS mit 14 Partnern, darunter die Daimler AG und die Robert Bosch GmbH, in den vergangenen zwei Jahren eine Softwareplattform entwickelt, auf der verschiedene Sensordaten von Kamera, Laser, Radar und weitere Informationen wie Wetterdaten kombiniert werden. Ziel ist, eine robuste und zuverlässige Wahrnehmung der Straßensituation unabhängig von der Komplexität und der Sichtverhältnisse zu gewährleisten. Nach der virtuellen Erprobung des Systems erfolgt nun der Praxistest, unter anderem auf dem Berliner Testfeld für hochautomatisiertes Fahren.

Starker Schneefall, ein Ball rollt auf die Fahrbahn: Selbst ein Mensch kann mitunter nicht schnell genug erkennen, ob dies ein gefährlicher Gegenstand oder...

Im Focus: Ultrakurze Momentaufnahmen der Dynamik von Elektronen in Festkörpern

Mit Hilfe ultrakurzer Laser- und Röntgenblitze haben Wissenschaftler am Max-Planck-Institut für Quantenoptik (Garching bei München) Schnappschüsse der bislang kürzesten Bewegung von Elektronen in Festkörpern gemacht. Die Bewegung hielt 750 Attosekunden lang an, bevor sie abklang. Damit stellten die Wissenschaftler einen neuen Rekord auf, ultrakurze Prozesse innerhalb von Festkörpern aufzuzeichnen.

Wenn Röntgenstrahlen auf Festkörpermaterialien oder große Moleküle treffen, wird ein Elektron von seinem angestammten Platz in der Nähe des Atomkerns...

Im Focus: Ultrafast snapshots of relaxing electrons in solids

Using ultrafast flashes of laser and x-ray radiation, scientists at the Max Planck Institute of Quantum Optics (Garching, Germany) took snapshots of the briefest electron motion inside a solid material to date. The electron motion lasted only 750 billionths of the billionth of a second before it fainted, setting a new record of human capability to capture ultrafast processes inside solids!

When x-rays shine onto solid materials or large molecules, an electron is pushed away from its original place near the nucleus of the atom, leaving a hole...

Im Focus: Quantensensoren entschlüsseln magnetische Ordnung in neuartigem Halbleitermaterial

Physiker konnte erstmals eine spiralförmige magnetische Ordnung in einem multiferroischen Material abbilden. Diese gelten als vielversprechende Kandidaten für zukünftige Datenspeicher. Der Nachweis gelang den Forschern mit selbst entwickelten Quantensensoren, die elektromagnetische Felder im Nanometerbereich analysieren können und an der Universität Basel entwickelt wurden. Die Ergebnisse von Wissenschaftlern des Departements Physik und des Swiss Nanoscience Institute der Universität Basel sowie der Universität Montpellier und Forschern der Universität Paris-Saclay wurden in der Zeitschrift «Nature» veröffentlicht.

Multiferroika sind Materialien, die gleichzeitig auf elektrische wie auch auf magnetische Felder reagieren. Die beiden Eigenschaften kommen für gewöhnlich...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

»Laser in Composites Symposium« in Aachen – von der Wissenschaft in die Anwendung

19.09.2017 | Veranstaltungen

Biowissenschaftler tauschen neue Erkenntnisse über molekulare Gen-Schalter aus

19.09.2017 | Veranstaltungen

Zwei Grad wärmer – und dann?

19.09.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

»Laser in Composites Symposium« in Aachen – von der Wissenschaft in die Anwendung

19.09.2017 | Veranstaltungsnachrichten

Zentraler Schalter der Immunabwehr gefunden

19.09.2017 | Biowissenschaften Chemie

Neue Materialchemie für Hochleistungsbatterien

19.09.2017 | Biowissenschaften Chemie